Invariant functions on commuting schemes via Langlands duality

Zhiwei Yun

Massachusetts Institute of Technology

August 5, 2023
PKU Math Forum

Overview

Joint work with Penghui Li and David Nadler (arXiv:2301.02618) Plan:
(1) Statements (Lie theory and commutative algebra)
(2) Proof outline (Betti geometric Langlands, cocenter of affine Hecke category)

Statements

Notation:

- G : connected reductive group over \mathbb{C}.
- \mathcal{C}_{G}^{2} (commuting scheme for G): pairs $\left(g_{1}, g_{2}\right) \in G \times G$ satisfying the equation $g_{1} g_{2}=g_{2} g_{1}$.
- G acts on \mathcal{C}_{G}^{2} by simultaneous conjugation.

Statements

Notation:

- G : connected reductive group over \mathbb{C}.
- \mathcal{C}_{G}^{2} (commuting scheme for G): pairs $\left(g_{1}, g_{2}\right) \in G \times G$ satisfying the equation $g_{1} g_{2}=g_{2} g_{1}$.
- G acts on \mathcal{C}_{G}^{2} by simultaneous conjugation.

Goal:
Understand G-invariant regular functions on \mathcal{C}_{G}^{2}, i.e., $\mathcal{O}\left(\mathcal{C}_{G}^{2}\right)^{G}$.

Toy model

Consider G-conjugation invariant functions on G.

Theorem (Chevalley restriction theorem)

Restriction to T gives an isomorphism of \mathbb{C}-algebras

Toy model

Consider G-conjugation invariant functions on G. Let $T \subset G$ be a maximal torus, W the Weyl group.

Theorem (Chevalley restriction theorem)

Restriction to T gives an isomorphism of \mathbb{C}-algebras

Toy model

Consider G-conjugation invariant functions on G. Let $T \subset G$ be a maximal torus, W the Weyl group.

Theorem (Chevalley restriction theorem)

Restriction to T gives an isomorphism of \mathbb{C}-algebras

$$
\mathcal{O}(G)^{G} \xrightarrow{\sim} \mathcal{O}(T)^{W} .
$$

Toy model

Consider G-conjugation invariant functions on G. Let $T \subset G$ be a maximal torus, W the Weyl group.

Theorem (Chevalley restriction theorem)

Restriction to T gives an isomorphism of \mathbb{C}-algebras

$$
\mathcal{O}(G)^{G} \xrightarrow{\sim} \mathcal{O}(T)^{W} .
$$

Example: $G=\mathrm{GL}_{n}$,

$$
\mathcal{O}(G)^{G} \cong \mathbb{C}\left[t_{1}^{ \pm 1}, \cdots, t_{n}^{ \pm 1}\right]^{S_{n}} \cong \mathbb{C}\left[e_{1}, \cdots, e_{n-1}, e_{n}, e_{n}^{-1}\right]
$$

Statement

Theorem (Li-Nadler-Y., 2023, simplified version)

Assume G is simply-connected (or more generally if the derived group of G is simply-connected), then restriction to $T \times T$ gives an isomorphism of \mathbb{C}-algebras

$$
\mathcal{O}\left(\mathcal{C}_{G}^{2}\right)^{G} \xrightarrow{\sim} \mathcal{O}(T \times T)^{W} .
$$

Theorem holds over \mathbb{Q} for split simply-connected groups.

Statement

Theorem (Li-Nadler-Y., 2023, simplified version)

Assume G is simply-connected (or more generally if the derived group of G is simply-connected), then restriction to $T \times T$ gives an isomorphism of \mathbb{C}-algebras

$$
\mathcal{O}\left(\mathcal{C}_{G}^{2}\right)^{G} \xrightarrow{\sim} \mathcal{O}(T \times T)^{W} .
$$

Theorem holds over \mathbb{Q} for split simply-connected groups.

Statement

Theorem (Li-Nadler-Y., 2023, simplified version)

Assume G is simply-connected (or more generally if the derived group of G is simply-connected), then restriction to $T \times T$ gives an isomorphism of \mathbb{C}-algebras

$$
\mathcal{O}\left(\mathcal{C}_{G}^{2}\right)^{G} \xrightarrow{\sim} \mathcal{O}(T \times T)^{W} .
$$

Theorem holds over \mathbb{Q} for split simply-connected groups. Example: $G=\mathrm{GL}_{n}$,

$$
\mathcal{O}\left(\mathcal{C}_{G}^{2}\right)^{G} \cong \mathbb{C}\left[s_{1}^{ \pm 1}, \cdots, s_{n}^{ \pm 1}, t_{1}^{ \pm 1}, \cdots, t_{n}^{ \pm 1}\right]^{S_{n}}
$$

What happens if G is not simply-connected?

 restriction to $T \times T$ is not an isomorphism.

What happens if G is not simply-connected?

Example: $G=\mathrm{PGL}_{2}$. Consider the following pair

$$
g_{1}=\left(\begin{array}{cc}
1 & \\
& -1
\end{array}\right), \quad g_{2}=\left(\begin{array}{cc}
& 1 \\
1 &
\end{array}\right) \in \mathrm{PGL}_{2}
$$

They satisfy $g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}=\left(\begin{array}{cc}-1 & \\ & -1\end{array}\right)=1 \in \mathrm{PGL}_{2}$.

What happens if G is not simply-connected?

Example: $G=\mathrm{PGL}_{2}$. Consider the following pair

$$
g_{1}=\left(\begin{array}{cc}
1 & \\
& -1
\end{array}\right), \quad g_{2}=\left(\begin{array}{cc}
& 1 \\
1 &
\end{array}\right) \in \mathrm{PGL}_{2}
$$

They satisfy $g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}=\left(\begin{array}{cc}-1 & \\ & -1\end{array}\right)=1 \in \mathrm{PGL}_{2}$.
However, $\left(g_{1}, g_{2}\right)$ cannot be simultaneously diagonalized, or even simultaneously put in upper triangular form (check this!)

What happens if G is not simply-connected?

Example: $G=\mathrm{PGL}_{2}$. Consider the following pair

$$
g_{1}=\left(\begin{array}{ll}
1 & \\
& -1
\end{array}\right), \quad g_{2}=\left(\begin{array}{ll}
& 1 \\
1 &
\end{array}\right) \in \mathrm{PGL}_{2}
$$

They satisfy $g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}=\left(\begin{array}{cc}-1 & \\ & -1\end{array}\right)=1 \in \mathrm{PGL}_{2}$.
However, $\left(g_{1}, g_{2}\right)$ cannot be simultaneously diagonalized, or even simultaneously put in upper triangular form (check this!)
Those pairs that can be simultaneously upper triangularized form a closed G-invariant subscheme of $\mathcal{C}_{G}^{2} ;\left(g_{1}, g_{2}\right)$ above lies in the complement. \Rightarrow restriction to $T \times T$ is not an isomorphism.

What happens if G is not simply-connected?

Assume G is semisimple. Let $G^{\text {sc }} \rightarrow G$ be the universal cover, whose kernel is $\pi_{1}(G)$. For $\left(g_{1}, g_{2}\right) \in \mathcal{C}_{G}^{2}$, take arbitrary liftings $\widetilde{g}_{1}, \widetilde{g}_{2} \in G^{\text {sc }}$, then consider $c=\widetilde{g}_{1} \widetilde{g}_{2} \widetilde{g}_{1}^{-1} \widetilde{g}_{2}^{-1} \in \pi_{1}(G)$. This is independent of the choice of liftings.

What happens if G is not simply-connected?

Assume G is semisimple. Let $G^{\text {sc }} \rightarrow G$ be the universal cover, whose kernel is $\pi_{1}(G)$. For $\left(g_{1}, g_{2}\right) \in \mathcal{C}_{G}^{2}$, take arbitrary liftings $\widetilde{g}_{1}, \widetilde{g}_{2} \in G^{\text {sc }}$, then consider $c=\widetilde{g}_{1} \widetilde{g}_{2} \widetilde{g}_{1}^{-1} \widetilde{g}_{2}^{-1} \in \pi_{1}(G)$. This is independent of the choice of liftings.
The assignment $\left(g_{1}, g_{2}\right) \mapsto c \in \pi_{1}(G)$ is a discrete invariant, and gives a decomposition

$$
\begin{equation*}
\mathcal{C}_{G}^{2}=\coprod_{c \in \pi_{1}(G)} \mathcal{C}_{G}^{2}(c) \tag{0.1}
\end{equation*}
$$

What happens if G is not simply-connected?

Assume G is semisimple. Let $G^{\text {sc }} \rightarrow G$ be the universal cover, whose kernel is $\pi_{1}(G)$. For $\left(g_{1}, g_{2}\right) \in \mathcal{C}_{G}^{2}$, take arbitrary liftings $\widetilde{g}_{1}, \widetilde{g}_{2} \in G^{\text {sc }}$, then consider $c=\widetilde{g}_{1} \widetilde{g}_{2} \widetilde{g}_{1}^{-1} \widetilde{g}_{2}^{-1} \in \pi_{1}(G)$. This is independent of the choice of liftings.
The assignment $\left(g_{1}, g_{2}\right) \mapsto c \in \pi_{1}(G)$ is a discrete invariant, and gives a decomposition

$$
\begin{equation*}
\mathcal{C}_{G}^{2}=\coprod_{c \in \pi_{1}(G)} \mathcal{C}_{G}^{2}(c) \tag{0.1}
\end{equation*}
$$

For general reductive group G, change $\pi_{1}(G)$ to $\pi_{1}\left(G^{\text {der }}\right)$. So that

$$
\mathcal{O}\left(\mathcal{C}_{G}^{2}\right)^{G}=\prod_{c \in \pi_{1}\left(G^{\mathrm{der}}\right)} \mathcal{O}\left(\mathcal{C}_{G}^{2}(c)\right)^{G}
$$

General statement

For each $c \in \pi_{1}\left(G^{\text {der }}\right)$, Borel-Friedman-Morgan defined a Levi subgroup $L_{c} \subset G$ (up to conjugacy, smallest Levi that contains a pair in $\mathcal{C}_{G}^{2}(c)$). Let T_{c} be the abelianization of L_{c}, and W_{c} the Weyl group $N_{G}\left(L_{c}\right) / L_{c}$ of L_{c}.

Theorem (Li-Nader-Y., 2023)

canonical isomorphism of \mathbb{C}-algebras

Theorem holds for split groups over the field of definition of c (a

General statement

For each $c \in \pi_{1}\left(G^{\text {der }}\right)$, Borel-Friedman-Morgan defined a Levi subgroup $L_{c} \subset G$ (up to conjugacy, smallest Levi that contains a pair in $\mathcal{C}_{G}^{2}(c)$). Let T_{c} be the abelianization of L_{c}, and W_{c} the Weyl group $N_{G}\left(L_{c}\right) / L_{c}$ of L_{c}.

Theorem (Li-Nadler-Y., 2023)

Let G be a connected reductive group, and $c \in \pi_{1}\left(G^{\text {der }}\right)$. Then there is a canonical isomorphism of \mathbb{C}-algebras

$$
\mathcal{O}\left(\mathcal{C}_{G}^{2}(c)\right)^{G} \xrightarrow{\sim} \mathcal{O}\left(T_{c} \times T_{c}\right)^{W_{c}} .
$$

General statement

For each $c \in \pi_{1}\left(G^{\text {der }}\right)$, Borel-Friedman-Morgan defined a Levi subgroup $L_{c} \subset G$ (up to conjugacy, smallest Levi that contains a pair in $\mathcal{C}_{G}^{2}(c)$). Let T_{c} be the abelianization of L_{c}, and W_{c} the Weyl group $N_{G}\left(L_{c}\right) / L_{c}$ of L_{c}.

Theorem (Li-Nadler-Y., 2023)

Let G be a connected reductive group, and $c \in \pi_{1}\left(G^{\mathrm{der}}\right)$. Then there is a canonical isomorphism of \mathbb{C}-algebras

$$
\mathcal{O}\left(\mathcal{C}_{G}^{2}(c)\right)^{G} \xrightarrow{\sim} \mathcal{O}\left(T_{c} \times T_{c}\right)^{W_{c}} .
$$

Theorem holds for split groups over the field of definition of c (a cyclotomic field).

Variants

Notation:

- \mathfrak{g} : Lie algebra of G.
- $\mathcal{C}_{G, \mathfrak{g}}$: the scheme of pairs $(g, X) \in G \times \mathfrak{g}$ such that $\operatorname{Ad}(g) X=X$.
- $\mathcal{C}_{\mathfrak{g}}^{2}$: the scheme of pairs $\left(X_{1}, X_{2}\right) \in \mathfrak{g} \times \mathfrak{g}$ such that $\left[X_{1}, X_{2}\right]=0$.

Theorem (Li-Nadler-Y., 2023)

Let G be a connected reductive group. The restriction maps give isomorphisms of \mathbb{C}-algebras

Variants

Notation:

- \mathfrak{g} : Lie algebra of G.
- $\mathcal{C}_{G, \mathfrak{g}}$: the scheme of pairs $(g, X) \in G \times \mathfrak{g}$ such that $\operatorname{Ad}(g) X=X$.
- $\mathcal{C}_{\mathfrak{g}}^{2}$: the scheme of pairs $\left(X_{1}, X_{2}\right) \in \mathfrak{g} \times \mathfrak{g}$ such that $\left[X_{1}, X_{2}\right]=0$.

Theorem (Li-Nadler-Y., 2023)

Let G be a connected reductive group. The restriction maps give isomorphisms of \mathbb{C}-algebras

$$
\begin{gathered}
\mathcal{O}\left(\mathcal{C}_{G, \mathfrak{g}}\right)^{G} \xrightarrow{\sim} \mathcal{O}(T \times \mathfrak{t})^{W}, \\
\mathcal{O}\left(\mathcal{C}_{\mathfrak{g}}^{2}\right)^{G} \xrightarrow{\sim} \mathcal{O}(\mathfrak{t} \times \mathfrak{t})^{W} .
\end{gathered}
$$

Variants

Notation:

- \mathfrak{g} : Lie algebra of G.
- $\mathcal{C}_{G, \mathfrak{g}}$: the scheme of pairs $(g, X) \in G \times \mathfrak{g}$ such that $\operatorname{Ad}(g) X=X$.
- $\mathcal{C}_{\mathfrak{g}}^{2}$: the scheme of pairs $\left(X_{1}, X_{2}\right) \in \mathfrak{g} \times \mathfrak{g}$ such that $\left[X_{1}, X_{2}\right]=0$.

Theorem (Li-Nadler-Y., 2023)

Let G be a connected reductive group. The restriction maps give isomorphisms of \mathbb{C}-algebras

$$
\begin{gathered}
\mathcal{O}\left(\mathcal{C}_{G, \mathfrak{g}}\right)^{G} \xrightarrow{\sim} \mathcal{O}(T \times \mathfrak{t})^{W} \\
\mathcal{O}\left(\mathcal{C}_{\mathfrak{g}}^{2}\right)^{G} \xrightarrow{\sim} \mathcal{O}(\mathfrak{t} \times \mathfrak{t})^{W} .
\end{gathered}
$$

Theorem holds over \mathbb{Q} for split groups.

Historical Remarks

- All these statements were known up to nilpotent elements: work of Joseph, Smilga-Kac, Borel-Friedman-Morgan. However, the reducedness question of $\mathcal{O}\left(\mathcal{C}_{G}^{2}\right)^{G}$ has been open for many years. So our essential contribution is showing that these rings of invariant functions are reduced.

Historical Remarks

- All these statements were known up to nilpotent elements: work of Joseph, Smilga-Kac, Borel-Friedman-Morgan. However, the reducedness question of $\mathcal{O}\left(\mathcal{C}_{G}^{2}\right)^{G}$ has been open for many years. So our essential contribution is showing that these rings of invariant functions are reduced.
- For commuting d-tuples $\mathcal{C}_{\mathfrak{g}}^{d}$ of Lie algebra \mathfrak{g} and arbitrary d, similar result is known for classical groups: Gan-Ginzburg, Domokos, Vaccarino $\left(\mathfrak{g l}_{n}\right)$; T.H. Chen-B.C.Ngô $\left(\mathfrak{s p}_{2 n}\right)$; L.Song-X.Xia -J.Xu $\left(\mathfrak{o}_{n}\right)$.

Historical Remarks

- All these statements were known up to nilpotent elements: work of Joseph, Smilga-Kac, Borel-Friedman-Morgan. However, the reducedness question of $\mathcal{O}\left(\mathcal{C}_{G}^{2}\right)^{G}$ has been open for many years. So our essential contribution is showing that these rings of invariant functions are reduced.
- For commuting d-tuples $\mathcal{C}_{\mathfrak{g}}^{d}$ of Lie algebra \mathfrak{g} and arbitrary d, similar result is known for classical groups: Gan-Ginzburg, Domokos, Vaccarino $\left(\mathfrak{g l}_{n}\right)$; T.H. Chen-B.C.Ngô $\left(\mathfrak{s p}_{2 n}\right)$; L.Song-X.Xia -J.Xu $\left(\mathfrak{o}_{n}\right)$.
- Open question: is $\mathcal{O}\left(\mathcal{C}_{G}^{2}\right), \mathcal{O}\left(\mathcal{C}_{G, \mathfrak{g}}\right)$, or $\mathcal{O}\left(\mathcal{C}_{\mathfrak{g}}^{2}\right)$ reduced?

Derived version

The equations $g_{1} g_{2}=g_{2} g_{1}$ are not all independent (not a complete intersection): if they were, the commuting scheme would have dimension equal to $\operatorname{dim} G$; however, it has dimension $\operatorname{dim} G+\operatorname{dim} T$.
redundant defining equations.
It fits into a derived Cartesian square

Derived version

The equations $g_{1} g_{2}=g_{2} g_{1}$ are not all independent (not a complete intersection): if they were, the commuting scheme would have dimension equal to $\operatorname{dim} G$; however, it has dimension $\operatorname{dim} G+\operatorname{dim} T$.
The scheme \mathcal{C}_{G}^{2} has a derived version \mathfrak{C}_{G}^{2}, taking into account of redundant defining equations. It fits into a derived Cartesian square

Derived version

The equations $g_{1} g_{2}=g_{2} g_{1}$ are not all independent (not a complete intersection): if they were, the commuting scheme would have dimension equal to $\operatorname{dim} G$; however, it has dimension $\operatorname{dim} G+\operatorname{dim} T$.
The scheme \mathcal{C}_{G}^{2} has a derived version \mathfrak{C}_{G}^{2}, taking into account of redundant defining equations. It fits into a derived Cartesian square

Its ring of functions is a differential graded algebra (in cohomological degrees ≤ 0):

$$
\mathcal{O}\left(\mathfrak{C}_{G}^{2}\right)=\mathcal{O}(G \times G) \stackrel{\mathbf{L}}{\otimes_{\mathcal{O}(G)}} \mathbb{C}
$$

Derived version

Theorem (Li-Nadler-Y., 2023)

Let G be a connected reductive group, and $c \in \pi_{1}\left(G^{\mathrm{der}}\right)$. Then there is a canonical quasi-isomorphism differential graded \mathbb{C}-algebras

$$
\mathcal{O}\left(\mathfrak{C}_{G}^{2}(c)\right)^{G} \xrightarrow{\sim}\left(\mathcal{O}\left(T_{c} \times T_{c}\right) \otimes \wedge\left(\mathfrak{t}_{c}^{*}\right)\right)^{W_{c}} .
$$

Here $\mathfrak{t}_{c}=\operatorname{Lie}\left(T_{c}\right)$, and $\wedge\left(\mathfrak{t}_{c}^{*}\right)$ has generators in degree -1 . Similar statements for the derived versions of $\mathcal{C}^{G, \mathfrak{g}}$ and $\mathcal{C}_{\mathfrak{g}}$ hold (by inserting $\wedge\left(\mathfrak{t}_{c}^{*}\right)$).

When G is simply-connected, this was conjectured by Berest-Ramadoss-Yeung (2017).

Proof outline

A geometric situation where commuting schemes naturally appear: consider G-local systems on a two-torus $\mathbb{T}^{2}=\mathbb{S}^{1} \times \mathbb{S}^{1}$. Monodromy operators along the meridian and longitude of \mathbb{T}^{2} give two commuting elements $g_{1}, g_{2} \in G$.

Proof outline

A geometric situation where commuting schemes naturally appear: consider G-local systems on a two-torus $\mathbb{T}^{2}=\mathbb{S}^{1} \times \mathbb{S}^{1}$. Monodromy operators along the meridian and longitude of \mathbb{T}^{2} give two commuting elements $g_{1}, g_{2} \in G$.
The (derived) moduli stack of G-local systems on \mathbb{T}^{2} is

$$
\operatorname{Loc}_{G}\left(\mathbb{T}^{2}\right)=\mathfrak{C}_{G}^{2} / \mathrm{Ad} G
$$

Betti geometric Langlands

Conjectured by Ben-Zvi-Nadler. Variant of (de Rham) geometric Langlands conjecture (Beilinson-Drinfeld, Arinkin-Gaitsgory).

Conjecture (Betti geometric Langlands)

There is an equivalence of dg-categories

Betti geometric Langlands

Conjectured by Ben-Zvi-Nadler. Variant of (de Rham) geometric Langlands conjecture (Beilinson-Drinfeld, Arinkin-Gaitsgory).

- From now on, previous G will be denoted by G^{\vee}.
- G : connected reductive group over \mathbb{C} Langlands dual to G^{\vee}.
- Example: $G^{\vee}=\mathrm{Sp}_{2 n}, G=\mathrm{SO}_{2 n+1}$.
- X : compact connected Riemann surface.
- $\operatorname{Bun}_{G}(X)$: moduli stack of principal G-bundles on X (alg. curve).
- $\operatorname{Loc}_{G^{\vee}}(\underline{X})$: moduli stack of G^{\vee}-local system on the underlying topological surface \underline{X}.

Conjecture (Betti geometric Langlands)
There is an equivalence of dg-categories

Betti geometric Langlands

Conjectured by Ben-Zvi-Nadler. Variant of (de Rham) geometric Langlands conjecture (Beilinson-Drinfeld, Arinkin-Gaitsgory).

- From now on, previous G will be denoted by G^{\vee}.
- G : connected reductive group over \mathbb{C} Langlands dual to G^{\vee}.
- Example: $G^{\vee}=\mathrm{Sp}_{2 n}, G=\mathrm{SO}_{2 n+1}$.
- X: compact connected Riemann surface.
- $\operatorname{Bun}_{G}(X)$: moduli stack of principal G-bundles on X (alg. curve).
- $\operatorname{Loc}_{G}{ }^{\vee}(\underline{X})$: moduli stack of G^{\vee}-local system on the underlying topological surface \underline{X}.

Conjecture (Betti geometric Langlands)

There is an equivalence of dg-categories

$$
D_{\mathcal{N}}\left(\operatorname{Bun}_{G}(X), \mathbb{C}\right) \cong \operatorname{Ind}^{\operatorname{Coh}_{\mathcal{N}} \vee}\left(\operatorname{Loc}_{G^{\vee}}(\underline{X})\right)
$$

Genus one

Now suppose X has genus 1 . Then $\underline{X}=\mathbb{T}^{2}$. Recall

$$
\operatorname{Loc}_{G^{\vee}}(\underline{X}) \cong \mathfrak{C}_{G^{\vee}}^{2} / G^{\vee}
$$

Our proof morally follow this strategy, except that we work with another model for $D\left(\operatorname{Bun}_{G}(X)\right)$

Genus one

Now suppose X has genus 1 . Then $\underline{X}=\mathbb{T}^{2}$. Recall

$$
\operatorname{Loc}_{G^{\vee}}(\underline{X}) \cong \mathfrak{C}_{G^{\vee}}^{2} / G^{\vee} .
$$

Therefore, we have

$$
\mathcal{O}\left(\mathfrak{C}_{G^{\vee}}^{2}\right)^{G^{\vee}} \cong \operatorname{REnd}_{\operatorname{Loc}_{G} \vee(\underline{X})}(\mathcal{O})
$$

If we assume Betti geometric Langlands, then $\mathcal{O} \in \operatorname{Coh}$
corresponds to an object $\mathcal{W} \in D\left(\operatorname{Bun}_{G}(X)\right)$, and

$$
\mathcal{O}\left(\mathcal{C}_{G^{\vee}}^{2}\right)^{G^{\vee}} \cong \operatorname{REnd}_{D\left(\operatorname{Bun}_{G}(X)\right)}(\mathcal{W}) .
$$

Genus one

Now suppose X has genus 1 . Then $\underline{X}=\mathbb{T}^{2}$. Recall

$$
\operatorname{Loc}_{G^{\vee}}(\underline{X}) \cong \mathfrak{C}_{G^{\vee}}^{2} / G^{\vee}
$$

Therefore, we have

$$
\mathcal{O}\left(\mathfrak{C}_{G^{\vee}}^{2}\right)^{G^{\vee}} \cong \operatorname{REnd}_{\operatorname{Loc}_{G^{\vee}}(\underline{X})}(\mathcal{O})
$$

If we assume Betti geometric Langlands, then $\mathcal{O} \in \operatorname{Coh}\left(\operatorname{Loc}_{G} \vee(\underline{X})\right)$ corresponds to an object $\mathcal{W} \in D\left(\operatorname{Bun}_{G}(X)\right)$, and

$$
\mathcal{O}\left(\mathfrak{C}_{G^{\vee}}^{2}\right)^{G^{\vee}} \cong \operatorname{REnd}_{D\left(\operatorname{Bun}_{G}(X)\right)}(\mathcal{W})
$$

Genus one

Now suppose X has genus 1 . Then $\underline{X}=\mathbb{T}^{2}$. Recall

$$
\operatorname{Loc}_{G^{\vee}}(\underline{X}) \cong \mathfrak{C}_{G^{\vee}}^{2} / G^{\vee} .
$$

Therefore, we have

$$
\mathcal{O}\left(\mathfrak{C}_{G^{\vee}}^{2}\right)^{G^{\vee}} \cong \operatorname{REnd}_{\operatorname{Loc}_{G^{\vee}}(\underline{X})}(\mathcal{O})
$$

If we assume Betti geometric Langlands, then $\mathcal{O} \in \operatorname{Coh}\left(\operatorname{Loc}_{G} \vee(\underline{X})\right)$ corresponds to an object $\mathcal{W} \in D\left(\operatorname{Bun}_{G}(X)\right)$, and

$$
\mathcal{O}\left(\mathfrak{C}_{G^{\vee}}^{2}\right)^{G^{\vee}} \cong \operatorname{REnd}_{D\left(\operatorname{Bun}_{G}(X)\right)}(\mathcal{W})
$$

Our proof morally follow this strategy, except that we work with another model for $D\left(\operatorname{Bun}_{G}(X)\right)$.

Affine Hecke category

- Finite Hecke category: $\mathcal{H}_{G}=D_{\text {mon }}(N \backslash G / N)$. Here mon means locally constant along left and right T-orbits. This is a monoidal dg-category.

Affine Hecke category

- Finite Hecke category: $\mathcal{H}_{G}=D_{\text {mon }}(N \backslash G / N)$. Here mon means locally constant along left and right T-orbits. This is a monoidal dg-category.
- Affine Hecke category: $\mathcal{H}_{L G}=D_{\text {mon }}\left(\mathbf{I}^{+} \backslash L G / \mathbf{I}^{+}\right)$. Here $L G=G(\mathbb{C}((t)))$ is the loop group of G, and $\mathbf{I}^{+} \subset G(\mathbb{C} \llbracket t \rrbracket)$ is the preimage of N under evaluation $t \mapsto 0$. Also a monoidal dg-category.

Affine Hecke category

- Finite Hecke category: $\mathcal{H}_{G}=D_{\text {mon }}(N \backslash G / N)$. Here mon means locally constant along left and right T-orbits. This is a monoidal dg-category.
- Affine Hecke category: $\mathcal{H}_{L G}=D_{\text {mon }}\left(\mathbf{I}^{+} \backslash L G / \mathbf{I}^{+}\right)$. Here $L G=G(\mathbb{C}((t)))$ is the loop group of G, and $\mathbf{I}^{+} \subset G(\mathbb{C} \llbracket t \rrbracket)$ is the preimage of N under evaluation $t \mapsto 0$. Also a monoidal dg-category.
- Standard objects: universal local systems on Bruhat double cosets $\mathbf{I} w \mathbf{I}$ for $w \in \widetilde{W}$ (affine Weyl group), then extend by zero.

Affine Hecke category

- Finite Hecke category: $\mathcal{H}_{G}=D_{\text {mon }}(N \backslash G / N)$. Here mon means locally constant along left and right T-orbits. This is a monoidal dg-category.
- Affine Hecke category: $\mathcal{H}_{L G}=D_{\text {mon }}\left(\mathbf{I}^{+} \backslash L G / \mathbf{I}^{+}\right)$. Here $L G=G(\mathbb{C}((t)))$ is the loop group of G, and $\mathbf{I}^{+} \subset G(\mathbb{C} \llbracket t \rrbracket)$ is the preimage of N under evaluation $t \mapsto 0$. Also a monoidal dg-category.
- Standard objects: universal local systems on Bruhat double cosets $\mathbf{I} w \mathbf{I}$ for $w \in \widetilde{W}$ (affine Weyl group), then extend by zero.
- C-Algebra $A \rightsquigarrow h h(A)=A \stackrel{\mathbf{L}}{\otimes}_{A \otimes A} A$ (the complex computing Hochschild homology of A).

Affine Hecke category

- Finite Hecke category: $\mathcal{H}_{G}=D_{\text {mon }}(N \backslash G / N)$. Here mon means locally constant along left and right T-orbits. This is a monoidal dg-category.
- Affine Hecke category: $\mathcal{H}_{L G}=D_{\text {mon }}\left(\mathbf{I}^{+} \backslash L G / \mathbf{I}^{+}\right)$. Here $L G=G(\mathbb{C}((t)))$ is the loop group of G, and $\mathbf{I}^{+} \subset G(\mathbb{C} \llbracket t \rrbracket)$ is the preimage of N under evaluation $t \mapsto 0$. Also a monoidal dg-category.
- Standard objects: universal local systems on Bruhat double cosets $\mathbf{I} w \mathbf{I}$ for $w \in \widetilde{W}$ (affine Weyl group), then extend by zero.
- C-Algebra $A \rightsquigarrow h h(A)=A \stackrel{\mathrm{~L}}{\otimes}_{A \otimes A} A$ (the complex computing Hochschild homology of A).
- Monoidal category $\mathcal{A} \rightsquigarrow h h(\mathcal{A})=\mathcal{A} \stackrel{\mathrm{L}}{\mathcal{A} \otimes \mathcal{A}}^{\mathcal{A}}$ (another category, cocenter of \mathcal{A})

Cocenter of affine Hecke category

- Monoidal equivalence $\mathcal{H}_{L G} \cong \operatorname{Ind} \operatorname{Coh}\left(S t_{G^{\vee}} / G^{\vee}\right)$. Mild generalization of Bezrukavnikov's Theorem. This can be viewed as Betti geometric Langlands for $\underline{X}=$ cylinder.

Cocenter of affine Hecke category

- Monoidal equivalence $\mathcal{H}_{L G} \cong \operatorname{Ind} \operatorname{Coh}\left(S t_{G^{\vee}} / G^{\vee}\right)$. Mild generalization of Bezrukavnikov's Theorem.
This can be viewed as Betti geometric Langlands for $\underline{X}=$ cylinder.
- Ben-Zvi-Nadler-Preygel:
$h h\left(\operatorname{IndCoh}\left(S t_{G^{\vee}} / G^{\vee}\right)\right) \cong \operatorname{IndCoh} \mathcal{N}^{\vee}\left(\mathfrak{C}_{G^{\vee}}^{2} / G^{\vee}\right)$.

Cocenter of affine Hecke category

- Monoidal equivalence $\mathcal{H}_{L G} \cong \operatorname{Ind} \operatorname{Coh}\left(S t_{G^{\vee}} / G^{\vee}\right)$. Mild generalization of Bezrukavnikov's Theorem.
This can be viewed as Betti geometric Langlands for $\underline{X}=$ cylinder.
- Ben-Zvi-Nadler-Preygel:
$h h\left(\operatorname{IndCoh}\left(S t_{G^{\vee}} / G^{\vee}\right)\right) \cong \operatorname{IndCoh} \mathcal{N}^{\vee}\left(\mathfrak{C}_{G^{\vee}}^{2} / G^{\vee}\right)$. Identify two ends of a cylinder, get \mathbb{T}^{2}.

Cocenter of affine Hecke category

- Monoidal equivalence $\mathcal{H}_{L G} \cong \operatorname{Ind} \operatorname{Coh}\left(S t_{G^{\vee}} / G^{\vee}\right)$. Mild generalization of Bezrukavnikov's Theorem.
This can be viewed as Betti geometric Langlands for $\underline{X}=$ cylinder.
- Ben-Zvi-Nadler-Preygel:
$h h\left(\operatorname{IndCoh}\left(S t_{G^{\vee}} / G^{\vee}\right)\right) \cong \operatorname{IndCoh} \mathcal{N}^{\vee}\left(\mathfrak{C}_{G^{\vee}}^{2} / G^{\vee}\right)$. Identify two ends of a cylinder, get \mathbb{T}^{2}.
- Combining these, get an equivalence

$$
h h\left(\mathcal{H}_{L G}\right) \cong \operatorname{IndCoh}_{\mathcal{N}^{\vee}}\left(\mathfrak{C}_{G^{\vee}}^{2} / G^{\vee}\right)
$$

Proof strategy

- Known: $h h\left(\mathcal{H}_{L G}\right) \cong \operatorname{IndCoh}_{\mathcal{N}^{\vee}}\left(\mathfrak{C}_{G^{\vee}}^{2} / G^{\vee}\right)$.
- Let $\mathcal{W} \leftrightarrow \mathcal{O}$ under this equivalence.
- Define a full subcategory $h h\left(\mathcal{H}_{L G}\right)_{0} \subset h h\left(\mathcal{H}_{L G}\right)$ that contains \mathcal{W}
- Identify $h h\left(\mathcal{H}_{L G}\right)_{0}$ with a more elementary category; describe \mathcal{W} in more familiar terms.

Proof strategy

- Known: $h h\left(\mathcal{H}_{L G}\right) \cong \operatorname{IndCoh}_{\mathcal{N}^{\vee}}\left(\mathfrak{C}_{G^{\vee}}^{2} / G^{\vee}\right)$.
- Let $\mathcal{W} \leftrightarrow \mathcal{O}$ under this equivalence.
- Define a full subcategory $h h\left(\mathcal{H}_{L G}\right)_{0} \subset h h\left(\mathcal{H}_{L G}\right)$ that contains \mathcal{W} - Identify $h h\left(\mathcal{H}_{L G}\right)_{0}$ with a more elementary category; describe \mathcal{W} in more familiar terms.

Proof strategy

- Known: $h h\left(\mathcal{H}_{L G}\right) \cong \operatorname{IndCoh}_{\mathcal{N}^{\vee}}\left(\mathfrak{C}_{G^{\vee}}^{2} / G^{\vee}\right)$.
- Let $\mathcal{W} \leftrightarrow \mathcal{O}$ under this equivalence.
- Define a full subcategory $h h\left(\mathcal{H}_{L G}\right)_{0} \subset h h\left(\mathcal{H}_{L G}\right)$ that contains \mathcal{W}.
more familiar terms.

Proof strategy

- Known: $h h\left(\mathcal{H}_{L G}\right) \cong \operatorname{IndCoh}_{\mathcal{N}^{\vee}}\left(\mathfrak{C}_{G^{\vee}}^{2} / G^{\vee}\right)$.
- Let $\mathcal{W} \leftrightarrow \mathcal{O}$ under this equivalence.
- Define a full subcategory $h h\left(\mathcal{H}_{L G}\right)_{0} \subset h h\left(\mathcal{H}_{L G}\right)$ that contains \mathcal{W}.
- Identify $h h\left(\mathcal{H}_{L G}\right)_{0}$ with a more elementary category; describe \mathcal{W} in more familiar terms.

Proof strategy

- Known: $h h\left(\mathcal{H}_{L G}\right) \cong \operatorname{IndCoh}_{\mathcal{N}^{\vee}}\left(\mathfrak{C}_{G^{\vee}}^{2} / G^{\vee}\right)$.
- Let $\mathcal{W} \leftrightarrow \mathcal{O}$ under this equivalence.
- Define a full subcategory $h h\left(\mathcal{H}_{L G}\right)_{0} \subset h h\left(\mathcal{H}_{L G}\right)$ that contains \mathcal{W}.
- Identify $h h\left(\mathcal{H}_{L G}\right)_{0}$ with a more elementary category; describe \mathcal{W} in more familiar terms.
- Compute REnd ${ }_{h h\left(\mathcal{H}_{L G}\right)_{0}}(\mathcal{W})$.

More details on $\mathcal{H}_{L G}$

Notation:

- Standard parahoric subgroups $\mathbf{P}_{J} \subset L G$ indexed by certain subsets J of affine simple roots of $L G$.
- Each \mathbf{P}_{J} has a Levi quotient L_{J}, a connected reductive group.
- The finite Hecke category \mathcal{H}_{J} of L_{J} is a full subcategory of $\mathcal{H}_{L G}$.

Theorem (J.Tao-Travkin)

Assume G is simply-connected. Then the natural functor

$$
\operatorname{colim}_{J}^{\otimes} \mathcal{H}_{J} \rightarrow \mathcal{H}_{L G}
$$

is an equivalence of monoidal categories. (partially order the J 's by inclusion)

More details on $h h\left(\mathcal{H}_{L G}\right)_{0}$

Theorem (Li-Nadler-Y.)

Assume G is simply-connected. Then the natural functor

$$
\operatorname{colim}_{J} h h\left(\mathcal{H}_{J}\right) \rightarrow h h\left(\mathcal{H}_{L G}\right)
$$

is a full embedding. We define $h h\left(\mathcal{H}_{L G}\right)_{0}$ to be the image of this embedding.

More details on $h h\left(\mathcal{H}_{L G}\right)_{0}$

Theorem (Li-Nadler-Y.)

Assume G is simply-connected. Then the natural functor

$$
\operatorname{colim}_{J} h h\left(\mathcal{H}_{J}\right) \rightarrow h h\left(\mathcal{H}_{L G}\right)
$$

is a full embedding. We define $h h\left(\mathcal{H}_{L G}\right)_{0}$ to be the image of this embedding.

More precisely, $h h\left(\mathcal{H}_{L G}\right)$ has a filtration by full subcategories $h h\left(\mathcal{H}_{L G}\right)_{\leq \nu}$ indexed by Newton points ν, starting with $h h\left(\mathcal{H}_{L G}\right)_{0}$. They form a recollement structure on $h h\left(\mathcal{H}_{L G}\right)$, similarly to sheaves on stratified spaces.

More details on $h h\left(\mathcal{H}_{L G}\right)_{0}$

Theorem (Li-Nadler-Y.)

Assume G is simply-connected. Then the natural functor

$$
\operatorname{colim}_{J} h h\left(\mathcal{H}_{J}\right) \rightarrow h h\left(\mathcal{H}_{L G}\right)
$$

is a full embedding. We define $h h\left(\mathcal{H}_{L G}\right)_{0}$ to be the image of this embedding.

More precisely, $h h\left(\mathcal{H}_{L G}\right)$ has a filtration by full subcategories $h h\left(\mathcal{H}_{L G}\right)_{\leq \nu}$ indexed by Newton points ν, starting with $h h\left(\mathcal{H}_{L G}\right)_{0}$. They form a recollement structure on $h h\left(\mathcal{H}_{L G}\right)$, similarly to sheaves on stratified spaces.
Proof ingredients: Tao-Travkin theorem; parabolic character sheaves (Lusztig); Results of $\mathrm{He}-\mathrm{Nie}$ and Xuhua He ; categorical contraction (Morse) principle .

Character sheaves

Theorem

Let H be a connected reductive group over \mathbb{C}. Then there is a natural equivalence

$$
h h\left(\mathcal{H}_{H}\right) \cong \mathcal{C S}(H) .
$$

Character sheaves

How to calculate $h h\left(\mathcal{H}_{J}\right)$?
Character sheaves on a reductive group H (Lusztig, reformualted by Mirkovic-Vilonen): $C S(H) \subset D\left(H / \mathrm{Ad}_{\mathrm{d}} H\right)$ is the full subcategory of sheaves with nilpotent singular support (controlled jumps).

Theorem

Let H be a connected reductive group over \mathbb{C}. Then there is a natural equivalence

$$
h h\left(\mathcal{H}_{H}\right) \cong \mathcal{C S}(H)
$$

Character sheaves

How to calculate $h h\left(\mathcal{H}_{J}\right)$?
Character sheaves on a reductive group H (Lusztig, reformualted by Mirkovic-Vilonen): $C S(H) \subset D\left(H / \mathrm{Ad}_{\mathrm{d}} H\right)$ is the full subcategory of sheaves with nilpotent singular support (controlled jumps).

Theorem

Let H be a connected reductive group over \mathbb{C}. Then there is a natural equivalence

$$
h h\left(\mathcal{H}_{H}\right) \cong \mathcal{C S}(H)
$$

Variants of this theorem appeared in work of Ben-Zvi-Nadler, Bezrukavnikov-Finkelberg-Ostrik and Lusztig.

Character sheaves

How to calculate $h h\left(\mathcal{H}_{J}\right)$?
Character sheaves on a reductive group H (Lusztig, reformualted by Mirkovic-Vilonen): $C S(H) \subset D\left(H / \mathrm{Ad}_{\mathrm{d}} H\right)$ is the full subcategory of sheaves with nilpotent singular support (controlled jumps).

Theorem

Let H be a connected reductive group over \mathbb{C}. Then there is a natural equivalence

$$
h h\left(\mathcal{H}_{H}\right) \cong \mathcal{C S}(H)
$$

Variants of this theorem appeared in work of Ben-Zvi-Nadler, Bezrukavnikov-Finkelberg-Ostrik and Lusztig. $\Rightarrow h h\left(\mathcal{H}_{L G}\right)_{0} \cong \operatorname{colim}_{J} \mathcal{C S}\left(L_{J}\right)$. Transition functors: parabolic induction.

\mathcal{W} and its endomorphism ring

- \mathcal{W} : image of the Whittaker object in $\mathcal{C S}(G)$.

Penghui Li: combinatorial description of colim ${ }_{J} \mathcal{C S}\left(L_{J}\right)$ in terms of
double affine Weyl groups.

- How to see decomposition of $\operatorname{REnd}(\mathcal{W})$ by $c \in \pi_{1}\left(G^{\mathrm{V}, \text { der })}\right.$?
Under the duality
these correspond to central characters of $\pi_{0}(Z G)$ acting on character sheaves on G.

\mathcal{W} and its endomorphism ring

- W: image of the Whittaker object in $\mathcal{C S}(G)$.
- Penghui Li: combinatorial description of $\operatorname{colim}_{J} \mathcal{C S}\left(L_{J}\right)$ in terms of double affine Weyl groups.
sheaves on G.

\mathcal{W} and its endomorphism ring

- W: image of the Whittaker object in $\mathcal{C S}(G)$.
- Penghui Li: combinatorial description of $\operatorname{colim}_{J} \mathcal{C S}\left(L_{J}\right)$ in terms of double affine Weyl groups.
- How to see decomposition of $\mathbf{R E n d}(\mathcal{W})$ by $c \in \pi_{1}\left(G^{\vee, \text { der }}\right)$?

\mathcal{W} and its endomorphism ring

- \mathcal{W} : image of the Whittaker object in $\mathcal{C S}(G)$.
- Penghui Li: combinatorial description of $\operatorname{colim}_{J} \mathcal{C S}\left(L_{J}\right)$ in terms of double affine Weyl groups.
- How to see decomposition of $\operatorname{REnd}(\mathcal{W})$ by $c \in \pi_{1}\left(G^{\vee, \text { der }}\right)$? Under the duality

$$
\pi_{1}\left(G^{\vee, \text { der }}\right) \longleftrightarrow \pi_{0}(Z G)
$$

these correspond to central characters of $\pi_{0}(Z G)$ acting on character sheaves on G.

Toy case: $G=T$ is a torus

- Let $\Lambda=\mathbb{X}_{*}(T)$.
- $h h\left(\mathcal{H}_{T}\right)_{0}=\mathcal{C S}(T)_{\Lambda}$, where Λ acts trivially on T.
- $\mathcal{C S}(T)=D_{\text {loc.const }}(T / \operatorname{Ad} T) \cong \operatorname{Loc}(T) \otimes D(\mathrm{pt} / T) \cong$ $\mathbb{C}[\Lambda] \otimes H_{*}(T)-\bmod \cong \mathcal{O}\left(T^{\vee}\right) \otimes \wedge(\mathfrak{t}[1])-\bmod$.
- $\mathcal{C S}(T)_{\Lambda} \cong \mathbb{C}[\Lambda]-\bmod (\mathcal{C S}(T)) \cong \mathcal{O}\left(T^{\vee} \times T^{\vee}\right) \otimes \wedge(\mathfrak{t}[1])-\bmod$
- \mathcal{W} corresponds to the free module of rank one. Therefore,

$$
\boldsymbol{R E n d}(\mathcal{W}) \cong \mathcal{O}\left(T^{\vee} \times T^{\vee}\right) \otimes \wedge(\mathfrak{t}[1])
$$

Cocenter conjecture

Conjecture (Ben-Zvi-Nadler)

Let X be a genus one Riemann surface. There is an equivalence

$$
D_{\mathcal{N}}\left(\operatorname{Bun}_{G}(X)\right) \cong h h\left(\mathcal{H}_{L G}\right) .
$$

Cocenter conjecture

Conjecture (Ben-Zvi-Nadler)

Let X be a genus one Riemann surface. There is an equivalence

$$
D_{\mathcal{N}}\left(\operatorname{Bun}_{G}(X)\right) \cong h h\left(\mathcal{H}_{L G}\right)
$$

- This is a Langlands functoriality or base change type statement: purely in terms of automorphic sides.

Cocenter conjecture

Conjecture (Ben-Zvi-Nadler)

Let X be a genus one Riemann surface. There is an equivalence

$$
D_{\mathcal{N}}\left(\operatorname{Bun}_{G}(X)\right) \cong h h\left(\mathcal{H}_{L G}\right)
$$

- This is a Langlands functoriality or base change type statement: purely in terms of automorphic sides.
- This is a combination of Betti geometric Langlands conjecture in genus 1, Bezrukavnikov's theorem and Ben-Zvi-Nadler-Preygel's theorem.

Cocenter conjecture

Conjecture (Ben-Zvi-Nadler)

Let X be a genus one Riemann surface. There is an equivalence

$$
D_{\mathcal{N}}\left(\operatorname{Bun}_{G}(X)\right) \cong h h\left(\mathcal{H}_{L G}\right)
$$

- This is a Langlands functoriality or base change type statement: purely in terms of automorphic sides.
- This is a combination of Betti geometric Langlands conjecture in genus 1, Bezrukavnikov's theorem and Ben-Zvi-Nadler-Preygel's theorem.
- The part $h h\left(\mathcal{H}_{L G}\right)_{0} \subset h h\left(\mathcal{H}_{L G}\right)$ corresponds to sheaves on $\operatorname{Bun}_{G}(X)$ supported on the open substack of semistable bundles. The subcategories $h h\left(\mathcal{H}_{L G}\right)_{\leq \nu}$ corresponds to the Harder-Narasimhan stratification of $\operatorname{Bun}_{G}(X)$.

Status

- Recently, Gaitsgory and Raskin announced proof of de Rham geometric Langlands, which implies Betti geometric Langlands. So the Cocenter Conjecture follows.
- Work in progress of Li-Nadler-Y.: direct proof of the cocenter
conjecture without going to the de Rham version.

Status

- Recently, Gaitsgory and Raskin announced proof of de Rham geometric Langlands, which implies Betti geometric Langlands. So the Cocenter Conjecture follows.
- Work in progress of Li-Nadler-Y.: direct proof of the cocenter conjecture without going to the de Rham version.

Happy birthday SMS!

