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Overview

Joint work with Penghui Li and David Nadler (arXiv:2301.02618)
Plan:

1 Statements (Lie theory and commutative algebra)

2 Proof outline (Betti geometric Langlands, cocenter of affine Hecke
category)

Zhiwei Yun (MIT) Invariant functions on commuting schemes Aug 2023, PKU Math Forum 2 / 26



Statements

Notation:

G: connected reductive group over C.

C2
G (commuting scheme for G): pairs (g1, g2) ∈ G×G satisfying the

equation g1g2 = g2g1.

G acts on C2
G by simultaneous conjugation.

Goal:
Understand G-invariant regular functions on C2

G, i.e., O(C2
G)G.
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Toy model

Consider G-conjugation invariant functions on G.
Let T ⊂ G be a maximal torus, W the Weyl group.

Theorem (Chevalley restriction theorem)

Restriction to T gives an isomorphism of C-algebras

O(G)G
∼→ O(T )W .

Example: G = GLn,

O(G)G ∼= C[t±1
1 , · · · , t±1

n ]Sn ∼= C[e1, · · · , en−1, en, e
−1
n ].
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Statement

Theorem (Li-Nadler-Y., 2023, simplified version)

Assume G is simply-connected (or more generally if the derived group of G
is simply-connected), then restriction to T × T gives an isomorphism of
C-algebras

O(C2
G)G

∼→ O(T × T )W .

Theorem holds over Q for split simply-connected groups.
Example: G = GLn,

O(C2
G)G ∼= C[s±1

1 , · · · , s±1
n , t±1

1 , · · · , t±1
n ]Sn .
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What happens if G is not simply-connected?

Example: G = PGL2. Consider the following pair

g1 =

(
1
−1

)
, g2 =

(
1

1

)
∈ PGL2.

They satisfy g1g2g
−1
1 g−1

2 =

(
−1

−1

)
= 1 ∈ PGL2.

However, (g1, g2) cannot be simultaneously diagonalized, or even
simultaneously put in upper triangular form (check this!)
Those pairs that can be simultaneously upper triangularized form a closed
G-invariant subscheme of C2

G; (g1, g2) above lies in the complement. ⇒
restriction to T × T is not an isomorphism.
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What happens if G is not simply-connected?

Assume G is semisimple. Let Gsc → G be the universal cover, whose
kernel is π1(G). For (g1, g2) ∈ C2

G, take arbitrary liftings g̃1, g̃2 ∈ Gsc, then
consider c = g̃1g̃2g̃

−1
1 g̃−1

2 ∈ π1(G). This is independent of the choice of
liftings.
The assignment (g1, g2) 7→ c ∈ π1(G) is a discrete invariant, and gives a
decomposition

C2
G =

∐
c∈π1(G)

C2
G(c). (0.1)

For general reductive group G, change π1(G) to π1(Gder). So that

O(C2
G)G =

∏
c∈π1(Gder)

O(C2
G(c))G.
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General statement

For each c ∈ π1(Gder) , Borel–Friedman–Morgan defined a Levi subgroup
Lc ⊂ G (up to conjugacy, smallest Levi that contains a pair in C2

G(c)). Let
Tc be the abelianization of Lc , and Wc the Weyl group NG(Lc)/Lc of Lc.

Theorem (Li-Nadler-Y., 2023)

Let G be a connected reductive group, and c ∈ π1(Gder). Then there is a
canonical isomorphism of C-algebras

O(C2
G(c))G

∼→ O(Tc × Tc)Wc .

Theorem holds for split groups over the field of definition of c (a
cyclotomic field).
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Variants

Notation:

g: Lie algebra of G.

CG,g: the scheme of pairs (g,X) ∈ G× g such that Ad(g)X = X.

C2
g : the scheme of pairs (X1, X2) ∈ g× g such that [X1, X2] = 0.

Theorem (Li-Nadler-Y., 2023)

Let G be a connected reductive group. The restriction maps give
isomorphisms of C-algebras

O(CG,g)G
∼→ O(T × t)W ,

O(C2
g )G

∼→ O(t× t)W .

Theorem holds over Q for split groups.
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Historical Remarks

All these statements were known up to nilpotent elements: work of
Joseph, Smilga-Kac, Borel–Friedman–Morgan. However, the
reducedness question of O(C2

G)G has been open for many years.
So our essential contribution is showing that these rings of invariant
functions are reduced.

For commuting d-tuples Cdg of Lie algebra g and arbitrary d, similar
result is known for classical groups: Gan–Ginzburg, Domokos,
Vaccarino (gln); T.H. Chen–B.C.Ngô (sp2n); L.Song–X.Xia –J.Xu
(on).

Open question: is O(C2
G),O(CG,g), or O(C2

g ) reduced?
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Derived version

The equations g1g2 = g2g1 are not all independent (not a complete
intersection): if they were, the commuting scheme would have dimension
equal to dimG; however, it has dimension dimG+ dimT .
The scheme C2

G has a derived version C2
G, taking into account of

redundant defining equations. It fits into a derived Cartesian square

C2
G

��

// G×G

(g1,g2 7→g1g2g−1
1 g−1

2 )

��
{1} �
� // G

Its ring of functions is a differential graded algebra (in cohomological
degrees ≤ 0):

O(C2
G) = O(G×G)

L
⊗O(G) C
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Derived version

Theorem (Li-Nadler-Y., 2023)

Let G be a connected reductive group, and c ∈ π1(Gder). Then there is a
canonical quasi-isomorphism differential graded C-algebras

O(C2
G(c))G

∼→ (O(Tc × Tc)⊗ ∧(t∗c))
Wc .

Here tc = Lie(Tc), and ∧(t∗c) has generators in degree −1.
Similar statements for the derived versions of CG,g and Cg hold (by
inserting ∧(t∗c)).

When G is simply-connected, this was conjectured by
Berest–Ramadoss–Yeung (2017).
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Proof outline

A geometric situation where commuting schemes naturally appear:
consider G-local systems on a two-torus T2 = S1 × S1. Monodromy
operators along the meridian and longitude of T2 give two commuting
elements g1, g2 ∈ G.
The (derived) moduli stack of G-local systems on T2 is

LocG(T2) = C2
G/AdG.
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Betti geometric Langlands

Conjectured by Ben-Zvi–Nadler. Variant of (de Rham) geometric
Langlands conjecture (Beilinson–Drinfeld, Arinkin–Gaitsgory).

From now on, previous G will be denoted by G∨.

G: connected reductive group over C Langlands dual to G∨.

Example: G∨ = Sp2n, G = SO2n+1.

X: compact connected Riemann surface.

BunG(X): moduli stack of principal G-bundles on X (alg. curve).

LocG∨(X): moduli stack of G∨-local system on the underlying
topological surface X.

Conjecture (Betti geometric Langlands)

There is an equivalence of dg-categories

DN (BunG(X),C) ∼= IndCohN∨(LocG∨(X)).
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Genus one

Now suppose X has genus 1. Then X = T2. Recall

LocG∨(X) ∼= C2
G∨/G

∨.

Therefore, we have

O(C2
G∨)G

∨ ∼= REndLocG∨ (X)(O).

If we assume Betti geometric Langlands, then O ∈ Coh(LocG∨(X))
corresponds to an object W ∈ D(BunG(X)), and

O(C2
G∨)G

∨ ∼= REndD(BunG(X))(W).

Our proof morally follow this strategy, except that we work with another
model for D(BunG(X)).
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Affine Hecke category

Finite Hecke category: HG = Dmon(N\G/N). Here mon means
locally constant along left and right T -orbits. This is a monoidal
dg-category.

Affine Hecke category: HLG = Dmon(I+\LG/I+). Here
LG = G(C((t))) is the loop group of G, and I+ ⊂ G(C[[t]]) is the
preimage of N under evaluation t 7→ 0. Also a monoidal dg-category.

Standard objects: universal local systems on Bruhat double cosets
IwI for w ∈ W̃ (affine Weyl group), then extend by zero.

C-Algebra A hh(A) = A
L
⊗A⊗A A (the complex computing

Hochschild homology of A).

Monoidal category A hh(A) = A
L
⊗A⊗A A (another category,

cocenter of A)
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Cocenter of affine Hecke category

Monoidal equivalence HLG ∼= IndCoh(StG∨/G
∨). Mild generalization

of Bezrukavnikov’s Theorem.
This can be viewed as Betti geometric Langlands for X =cylinder.

Ben-Zvi–Nadler–Preygel:
hh(IndCoh(StG∨/G

∨)) ∼= IndCohN∨(C2
G∨/G

∨).
Identify two ends of a cylinder, get T2.

Combining these, get an equivalence

hh(HLG) ∼= IndCohN∨(C2
G∨/G

∨).
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Proof strategy

Known: hh(HLG) ∼= IndCohN∨(C2
G∨/G

∨).

Let W ↔ O under this equivalence.

Define a full subcategory hh(HLG)0 ⊂ hh(HLG) that contains W.

Identify hh(HLG)0 with a more elementary category; describe W in
more familiar terms.

Compute REndhh(HLG)0(W).
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More details on HLG

Notation:

Standard parahoric subgroups PJ ⊂ LG indexed by certain subsets J
of affine simple roots of LG.

Each PJ has a Levi quotient LJ , a connected reductive group.

The finite Hecke category HJ of LJ is a full subcategory of HLG.

Theorem (J.Tao-Travkin)

Assume G is simply-connected. Then the natural functor

colim⊗J HJ → HLG

is an equivalence of monoidal categories. (partially order the J ’s by
inclusion)
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More details on hh(HLG)0

Theorem (Li-Nadler-Y.)

Assume G is simply-connected. Then the natural functor

colimJ hh(HJ)→ hh(HLG)

is a full embedding. We define hh(HLG)0 to be the image of this
embedding.

More precisely, hh(HLG) has a filtration by full subcategories hh(HLG)≤ν
indexed by Newton points ν, starting with hh(HLG)0. They form a
recollement structure on hh(HLG), similarly to sheaves on stratified
spaces.
Proof ingredients: Tao-Travkin theorem; parabolic character sheaves
(Lusztig); Results of He–Nie and Xuhua He; categorical contraction
(Morse) principle .
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Character sheaves

How to calculate hh(HJ)?
Character sheaves on a reductive group H (Lusztig, reformualted by
Mirkovic–Vilonen): CS(H) ⊂ D(H/AdH) is the full subcategory of
sheaves with nilpotent singular support (controlled jumps).

Theorem

Let H be a connected reductive group over C. Then there is a natural
equivalence

hh(HH) ∼= CS(H).

Variants of this theorem appeared in work of Ben-Zvi–Nadler,
Bezrukavnikov–Finkelberg–Ostrik and Lusztig.
⇒ hh(HLG)0

∼= colimJ CS(LJ). Transition functors: parabolic induction.
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W and its endomorphism ring

W: image of the Whittaker object in CS(G).

Penghui Li: combinatorial description of colimJ CS(LJ) in terms of
double affine Weyl groups.

How to see decomposition of REnd(W) by c ∈ π1(G∨,der)?
Under the duality

π1(G∨,der)! π0(ZG)

these correspond to central characters of π0(ZG) acting on character
sheaves on G.
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Toy case: G = T is a torus

Let Λ = X∗(T ).

hh(HT )0 = CS(T )Λ, where Λ acts trivially on T .

CS(T ) = Dloc.const(T/AdT ) ∼= Loc(T )⊗D(pt/T ) ∼=
C[Λ]⊗H∗(T )-mod ∼= O(T∨)⊗ ∧(t[1])-mod.

CS(T )Λ
∼= C[Λ]-mod(CS(T )) ∼= O(T∨ × T∨)⊗ ∧(t[1])-mod

W corresponds to the free module of rank one. Therefore,

REnd(W) ∼= O(T∨ × T∨)⊗ ∧(t[1]).

Zhiwei Yun (MIT) Invariant functions on commuting schemes Aug 2023, PKU Math Forum 23 / 26



Cocenter conjecture

Conjecture (Ben-Zvi–Nadler)

Let X be a genus one Riemann surface. There is an equivalence

DN (BunG(X)) ∼= hh(HLG).

This is a Langlands functoriality or base change type statement:
purely in terms of automorphic sides.

This is a combination of Betti geometric Langlands conjecture in
genus 1, Bezrukavnikov’s theorem and Ben-Zvi–Nadler–Preygel’s
theorem.

The part hh(HLG)0 ⊂ hh(HLG) corresponds to sheaves on BunG(X)
supported on the open substack of semistable bundles. The
subcategories hh(HLG)≤ν corresponds to the Harder-Narasimhan
stratification of BunG(X).
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Status

Recently, Gaitsgory and Raskin announced proof of de Rham
geometric Langlands, which implies Betti geometric Langlands. So
the Cocenter Conjecture follows.

Work in progress of Li–Nadler–Y.: direct proof of the cocenter
conjecture without going to the de Rham version.
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Happy birthday SMS!

Zhiwei Yun (MIT) Invariant functions on commuting schemes Aug 2023, PKU Math Forum 26 / 26


