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Incompressible Porous Media (IPM) equation

⇢(x , t): density of incompressible fluid in porous media.

u(x , t): velocity field of fluid.

(
@t⇢+r · (⇢u) = 0

r · u = 0
in ⌦⇥ [0,T ).

Here the spatial domain ⌦ is R2, T2, or S = T⇥ [�⇡,⇡].

Darcy’s law for flow in porous media:

u = �rp �
✓

0
g⇢

◆
.

Setting g = 1, the Biot-Savart law becomes

u = @x1r?(��⌦)
�1⇢.



On well-posedness of IPM

Note that IPM closely resembles 2D Euler equation !t + u ·r! = 0, except
that u = r?(��)�1! in 2D Euler, whereas u = @x1r?(��)�1⇢ in IPM.

Córdoba–Gancedo–Orive ’07: Local well-posedness in H
s , and various

blow-up criteria. Numerics suggest that kr⇢kL1 is growing as t ! 1,
although no evidence for finite-time blow-up.

Elgindi ’14 and Castro–Córdoba–Lear ’19: Global WP and convergence when
⇢0 is close to the stable stratified state ⇢ = �x2.

But for general smooth initial data, it is still an open question whether
solutions are globally well-posed in time.



Small scale formation of IPM in R2

Goal: Assuming a global-in-time solution ⇢ in ⌦⇥ [0,1), we want to rigorously
prove the growth of r⇢ as t ! 1 for some initial data.

Theorem (Kiselev–Y. ’21)

Assume ⇢0 2 C
1
c
(R2) is odd in x2, and ⇢0 � 0 in R⇥R+

. If the solution remains

smooth for all time, it satisfies

ˆ 1

0
k⇢(t)k�

4
s

Ḣs (R2)
dt  C (s, ⇢0) < 1 for all s > 0.

It implies lim sup
t!1 t

� s

4 k⇢(t)k
Ḣs (R2) = 1 for all s > 0, thus ⇢(t) has

infinite-in-time growth in Ḣ
s norm for any s > 0.

Here the s > 0 range is sharp, since k⇢(t)kL2 is invariant in time.



Sketch of the proof: problem set-up

Set up of initial data:

(Note that the odd symmetry is preserved for all times.)

Main tool: monotonicity of the potential energy

E (t) :=

ˆ
R2

⇢(x , t)x2 dx .

A quick computation gives (using u = @x1r?(��)�1⇢)

d

dt
E (t) =

ˆ
R2

⇢u2 dx =

ˆ
R2

⇢ @2
x1x1

(��)�1⇢ dx = �k@x1⇢k2Ḣ�1 =: ��(t).

⇢(·, t) � 0 in the upper half plane =) as long as we have a smooth solution,

E (t) � 0 for all t � 0.



Relating �(t) with k⇢k
Ḣs

Recall: �(t) := k@x1⇢k2Ḣ�1 satisfies
´1
0 �(t)  E (0) < 1.

Note that �(t) = 0 () @x1⇢(t) ⌘ 0.
So we expect
“�(t) ⌧ 1 =) k⇢(t)k

Ḣs � 1”.

Goal: k⇢(t)k
Ḣs & �(t)�s/4 for all s > 0.

Plugging it into
´1
0 �(t)dt < C finishes the proof!

Idea of proof: On the Fourier side,
´
R2 |⇢̂(⇠)|2d⇠ = k⇢0k2L2 is conserved;

|⇢̂(⇠)|  k⇢0kL1 is bounded.

So �(t) =

ˆ
R2

⇠21
|⇠|2 |⇢̂(⇠)|

2
d⇠ ⌧ 1 =) k⇢(t)k

Ḣs �
ˆ
R2

⇠2s2 |⇢̂(⇠)|2d⇠ & ��s/2.



Stability v.s. instability of stratified states

Note that for the IPM, any horizontal stratified state ⇢s(x) = g(x2) is
stationary. Is it stable or not?

⌘ := ⇢� ⇢s satisfies ⌘t + u ·r⌘ = �g
0(x2)u2 with u = r?(��)�1@x1⌘.

Linearized equation: ⌘t = �g
0(x2)(��)�1@2

x1
⌘.

For g(x2) = �x2, asymptotic stability for the nonlinear equation was
established by Elgindi ’14 in R2 for H20 and above, and
Castro–Córdoba–Lear ’18 in the strip S = T⇥ [0, 1] for H10 and above.

Interestingly, we’ll show this linearly stable steady state in a strip is
nonlinearly unstable in H

s if s is low!



Nonlinear instability of stratified states in a strip

We prove nonlinear instability for any stratified states in a strip, including the
nonlinearly stable ones (in H

10 or above) ⇢s = �x2:

Theorem (Kiselev–Y. ’21)

Let ⇢s 2 C
1(S) be any stationary solution. For any ✏, � > 0, there exists an

initial data ⇢0 2 C
1(S) satisfying

k⇢0 � ⇢skH2��(S)  ✏,

such that the solution satisfies (if it remains smooth for all times)

lim sup
t!1

t
� s

2 k⇢(t)� ⇢skḢs+1(S) = 1 for all s > 0.

Combining the stability and instability results together, we know in a strip S , the
steady state ⇢s = �x2 is

stable in H
m for m � 10 (Castro–Córdoba–Lear ’18)

unstable in H
m for 1 < m < 2 (Kiselev-Y. ’21)

Such phenomenon is common in the study of PDEs: the stability/instability of
steady states often depends on the norm used.



Proof: adding a small “bubble”

Idea: add a little “bubble” locally to create two closed level sets in ⇢0. (Its
H

2�✏ norm can be made small, but not H2 and above.)

The closed loops remain closed during the evolution, meaning ⇢(t) can never
get too close to a perfect stratified state – can show that

ˆ
S

|@x1⇢(x , t)|dx > c(⇢0) > 0 for all t.

Combining this with �(t) = k@x1⇢k2Ḣ�1 being integrable in time immediately

leads to infinite-in-time growth of k@x1⇢k2Ḣs
for s > 0.



2D viscous Boussinesq equation without density di↵usivity

2D viscous Boussinesq equation in T2
with no density di↵usivity:

8
><

>:

⇢t + u ·r⇢ = 0,

ut + u ·ru = �rp � ⇢e2 +�u,

r · u = 0,

Global well-posedness in H
s�1 ⇥ H

s
: Hou–Li ’05, Chae ’06, Larios–Lunasin–Titi

’13, Hu–Kukavica–Ziane ’13 & ’15.

Upper bound on k⇢(t)kH1 : Ju ’17 (double exp growth), Kukavica–Wang ’19 (exp

growth)

But can k⇢kH1 grow to infinity as t ! 1?

Theorem (Kiselev–Park–Y. ’22, preprint)

There exists smooth initial data ⇢0, u0 in T2
such that the global-in-time smooth

solution (⇢, u) satisfies lim sup
t!1 t

�1/6k⇢(t)kH1 = 1.

The proof has a similar flavor as the IPM case, but it’s more delicate since the

potential energy is not monotone for Boussinesq.



Inviscid 2D Boussinesq equation

In the inviscid case, let us work with the variables ⇢ and vorticity !:
(
⇢t + u ·r⇢ = 0,

!t + u ·r! = �@1⇢,

where u can be recovered from the Biot-Savart law u = r?(��)�1!.

Whether smooth initial data can lead to a blow-up in T2 or R2 is an
outstanding open question.

It is well-known that away from the axis of symmetry, the 3D axisymmetric
Euler equation is closely related to 2D Boussinesq:

(
Dt(ru✓) = 0,

Dt

⇣
!✓

r

⌘
= r

�4@z(ru✓)2,

where Dt := @t + u
r@r + u

z@z is the material derivative, and (ur , uz) can be
recovered from !✓/r by a similar Biot-Savart law.



Blow-up for inviscid 2D Boussinesq and 3D Euler

In the presence of boundary, or for non-smooth initial data, there are many
exciting developments on finite-time blow-up:

Luo–Hou ’14: convincing numerical evidence for blow-up at the boundary for
3D axisymmetric Euler

Elgindi–Jeong ’20: blow-up in domain with a corner

Elgindi ’21: blow-up for C 1,↵ solutions for 3D Euler

Chen–Hou ’21: blow-up for C 1,↵ solutions with boundary

Wang–Lai–Gómez-Serrano–Buckmaster ’22: numerics for approximate
self-similar blow-up solution using physics-informed neural networks.

Chen–Hou ’22: stable nearly self-similar blowup for smooth solutions
(combination of analysis + computer-assisted estimates)

Question: Can one construct solutions with infinite-in-time growth for more
general class of initial data?



Infinite-in-time growth in a strip

Theorem (Kiselev–Park–Y. ’22, preprint)

Let ⌦ = T⇥ [0,⇡]. Let ⇢0 2 C
1(⌦) be even in x1, and !0 2 C

1(⌦) be odd in

x1, with
´
[0,⇡]⇥[0,⇡] !0dx � 0. Assume that there exists k0 > 0 such that

⇢0 � k0 > 0 on {0}⇥ [0,⇡], and ⇢0  0 on {⇡}⇥ [0,⇡]. Then the solution

satisfies the following during its lifespan:

k!(t)kLp(⌦) & t
3� 2

p ,

ku(t)kL1(⌦) & t,

sup
⌧2[0,t]

kr⇢(⌧)kL1(⌦) & t
2.

x1

x2

0 ⇡

⇡

�⇡

The proof is a soft argument, based on an interplay
between various monotone and conservative quantities.



Monotonicity of vorticity integral

Let Q be the right half of the strip. Simple but useful observation:

d

dt

ˆ
Q

!dx =⇠⇠⇠⇠⇠⇠⇠:0ˆ
Q

�u ·r!dx �
ˆ
Q

@1⇢dx

=

ˆ ⇡

0
⇢(0, x2, t)| {z }

�k0

dx2 �
ˆ ⇡

0
⇢(⇡, x2, t)| {z }

0

dx2

� k0⇡.

Since
´
@Q u · dl =

´
Q
!dx � k0⇡t, we have ku(t)kL1 grows at least linearly.

On the other hand, kukL2 is bounded for all times by energy conservation.

Combining the boundedness of kukL2(Q) and linear growth of
´
@Q u · dl , we

know u must change rapidly in a small neighborhood of @Q, leading to
super-linear growth of ru (and !).



3D axisymmetric Euler in an annular cylinder

Using a similar idea, we obtain infinite-in-time growth for the 3D axisymmetric
Euler equation in an annular cylinder

⌦ = {(r , ✓, z) : r 2 [⇡, 2⇡]; ✓ 2 T, z 2 T}.

Theorem (Kiselev–Park–Y. ’22, preprint)

Let u
✓
0 2 C

1(⌦) be even in z , !✓
0 2 C

1(⌦) odd in z , with
´ ⇡
0

´ 2⇡
⇡ !✓

0drdz � 0.
Assume there exists k0 > 0 such that u

✓
0 � k0 > 0 on z = ⇡, and |u✓0 |  1

8k0 on

z = 0. Then the solution to axisymmetric 3D Euler satisfies

k!✓(t)kLp(⌦) & t
3� 2

p and ku(t)kL1(⌦) & t

during the lifespan of the solution.

z

⇡ 2⇡ r

�⇡

⇡

z

Q



Thank you for your attention!


