Small scale formations in fluid equations with gravity

Yao Yao
National University of Singapore

joint work with Alexander Kiselev and Jaemin Park

Peking University Mathematics Forum
Aug 2, 2023

Incompressible Porous Media (IPM) equation

- $\rho(x, t)$: density of incompressible fluid in porous media.
- $\boldsymbol{u}(x, t)$: velocity field of fluid.

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{u})=0 \quad \text { in } \Omega \times[0, T) . \\
\nabla \cdot \boldsymbol{u}=0
\end{array}\right.
$$

Here the spatial domain Ω is \mathbb{R}^{2}, \mathbb{T}^{2}, or $S=\mathbb{T} \times[-\pi, \pi]$.

- Darcy's law for flow in porous media:

$$
\boldsymbol{u}=-\nabla p-\binom{0}{g \rho} .
$$

- Setting $g=1$, the Biot-Savart law becomes

$$
\boldsymbol{u}=\partial_{x_{1}} \nabla^{\perp}\left(-\Delta_{\Omega}\right)^{-1} \rho .
$$

On well-posedness of IPM

- Note that IPM closely resembles 2D Euler equation $\omega_{t}+u \cdot \nabla \omega=0$, except that $u=\nabla^{\perp}(-\Delta)^{-1} \omega$ in 2D Euler, whereas $u=\partial_{x_{1}} \nabla^{\perp}(-\Delta)^{-1} \rho$ in IPM.
- Córdoba-Gancedo-Orive '07: Local well-posedness in H^{s}, and various blow-up criteria. Numerics suggest that $\|\nabla \rho\|_{L_{\infty}}$ is growing as $t \rightarrow \infty$, although no evidence for finite-time blow-up.

- Elgindi '14 and Castro-Córdoba-Lear '19: Global WP and convergence when ρ_{0} is close to the stable stratified state $\rho=-x_{2}$.
- But for general smooth initial data, it is still an open question whether solutions are globally well-posed in time.

Small scale formation of IPM in \mathbb{R}^{2}

Goal: Assuming a global-in-time solution ρ in $\Omega \times[0, \infty)$, we want to rigorously prove the growth of $\nabla \rho$ as $t \rightarrow \infty$ for some initial data.

Theorem (Kiselev-Y. '21)

Assume $\rho_{0} \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$ is odd in x_{2}, and $\rho_{0} \geq 0$ in $\mathbb{R} \times \mathbb{R}^{+}$. If the solution remains smooth for all time, it satisfies

$$
\int_{0}^{\infty}\|\rho(t)\|_{\dot{H}^{s}\left(\mathbb{R}^{2}\right)}^{-\frac{4}{s}} d t \leq C\left(s, \rho_{0}\right)<\infty \quad \text { for all } s>0
$$

- It implies lim $\sup _{t \rightarrow \infty} t^{-\frac{s}{4}}\|\rho(t)\|_{\dot{H}^{s}\left(\mathbb{R}^{2}\right)}=\infty$ for all $s>0$, thus $\rho(t)$ has infinite-in-time growth in \dot{H}^{s} norm for any $s>0$.
- Here the $s>0$ range is sharp, since $\|\rho(t)\|_{L^{2}}$ is invariant in time.

Sketch of the proof: problem set-up

- Set up of initial data:

(Note that the odd symmetry is preserved for all times.)
- Main tool: monotonicity of the potential energy

$$
E(t):=\int_{\mathbb{R}^{2}} \rho(x, t) x_{2} d x
$$

- A quick computation gives (using $\boldsymbol{u}=\partial_{x_{1}} \nabla^{\perp}(-\Delta)^{-1} \rho$)

$$
\frac{d}{d t} E(t)=\int_{\mathbb{R}^{2}} \rho u_{2} d x=\int_{\mathbb{R}^{2}} \rho \partial_{x_{1} x_{1}}^{2}(-\Delta)^{-1} \rho d x=-\left\|\partial_{x_{1}} \rho\right\|_{\dot{H}^{-1}}^{2}=:-\delta(t) .
$$

- $\rho(\cdot, t) \geq 0$ in the upper half plane \Longrightarrow as long as we have a smooth solution,

$$
E(t) \geq 0 \quad \text { for all } t \geq 0
$$

Relating $\delta(t)$ with $\|\rho\|_{\dot{H}^{s}}$

- Recall: $\delta(t):=\left\|\partial_{x_{1}} \rho\right\|_{H^{-1}}^{2}$ satisfies $\int_{0}^{\infty} \delta(t) \leq E(0)<\infty$.
- Note that $\delta(t)=0 \Longleftrightarrow \partial_{x_{1}} \rho(t) \equiv 0$. So we expect

$$
" \delta(t) \ll 1 \Longrightarrow\|\rho(t)\|_{\mathcal{H}^{s}} \gg 1 \text { ". }
$$

- Goal: $\|\rho(t)\|_{H^{s}} \gtrsim \delta(t)^{-s / 4}$ for all $s>0$.

Plugging it into $\int_{0}^{\infty} \delta(t) d t<C$ finishes the proof!

- Idea of proof: On the Fourier side, $\int_{\mathbb{R}^{2}}|\hat{\rho}(\xi)|^{2} d \xi=\left\|\rho_{0}\right\|_{L^{2}}^{2}$ is conserved; $|\hat{\rho}(\xi)| \leq\left\|\rho_{0}\right\|_{L^{1}}$ is bounded.

So $\delta(t)=\int_{\mathbb{R}^{2}} \frac{\xi_{1}^{2}}{|\xi|^{2}}|\hat{\rho}(\xi)|^{2} d \xi \ll 1 \Longrightarrow\|\rho(t)\|_{\dot{H}^{s}}^{2} \geq \int_{\mathbb{R}^{2}} \xi_{2}^{2 s}|\hat{\rho}(\xi)|^{2} d \xi \gtrsim \delta^{-s / 2}$.

Stability v.s. instability of stratified states

- Note that for the IPM, any horizontal stratified state $\rho_{s}(x)=g\left(x_{2}\right)$ is stationary. Is it stable or not?
- $\eta:=\rho-\rho_{s}$ satisfies $\eta_{t}+u \cdot \nabla \eta=-g^{\prime}\left(x_{2}\right) u_{2}$ with $u=\nabla^{\perp}(-\Delta)^{-1} \partial_{x_{1}} \eta$.
negative operator
- Linearized equation: $\eta_{t}=-g^{\prime}\left(x_{2}\right)(-\Delta)^{-1} \partial_{x_{1}}^{2} \eta$.
- For $g\left(x_{2}\right)=-x_{2}$, asymptotic stability for the nonlinear equation was established by Elgindi '14 in \mathbb{R}^{2} for H^{20} and above, and Castro-Córdoba-Lear '18 in the strip $S=\mathbb{T} \times[0,1]$ for H^{10} and above.

$$
\begin{aligned}
& \rho_{s}=-x_{2} \\
& \text { (nonlinearly stable in } \\
& H^{s} \text { for large } s!\text {) }
\end{aligned}
$$

- Interestingly, we'll show this linearly stable steady state in a strip is nonlinearly unstable in H^{s} if s is low!

Nonlinear instability of stratified states in a strip

We prove nonlinear instability for any stratified states in a strip, including the nonlinearly stable ones (in H^{10} or above) $\rho_{s}=-x_{2}$:

Theorem (Kiselev-Y. '21)
Let $\rho_{s} \in C^{\infty}(S)$ be any stationary solution. For any $\epsilon, \gamma>0$, there exists an initial data $\rho_{0} \in C^{\infty}(S)$ satisfying

$$
\left\|\rho_{0}-\rho_{s}\right\|_{H^{2-\gamma}(S)} \leq \epsilon,
$$

such that the solution satisfies (if it remains smooth for all times)

$$
\limsup _{t \rightarrow \infty} t^{-\frac{s}{2}}\left\|\rho(t)-\rho_{s}\right\|_{\dot{H}^{s+1}(S)}=\infty \quad \text { for all } s>0
$$

Combining the stability and instability results together, we know in a strip S, the steady state $\rho_{s}=-x_{2}$ is

- stable in H^{m} for $m \geq 10$ (Castro-Córdoba-Lear '18)
- unstable in H^{m} for $1<m<2$ (Kiselev-Y. '21)

Such phenomenon is common in the study of PDEs: the stability/instability of steady states often depends on the norm used.

Proof: adding a small "bubble"

- Idea: add a little "bubble" locally to create two closed level sets in ρ_{0}. (Its $H^{2-\epsilon}$ norm can be made small, but not H^{2} and above.)

- The closed loops remain closed during the evolution, meaning $\rho(t)$ can never get too close to a perfect stratified state - can show that

$$
\int_{S}\left|\partial_{x_{1}} \rho(x, t)\right| d x>c\left(\rho_{0}\right)>0 \text { for all } t .
$$

- Combining this with $\delta(t)=\left\|\partial_{\chi_{1}} \rho\right\|_{\dot{H}^{-1}}^{2}$ being integrable in time immediately leads to infinite-in-time growth of $\left\|\partial_{x_{1}} \rho\right\|_{\dot{H}^{s}}^{2}$ for $s>0$.

2D viscous Boussinesq equation without density diffusivity

- 2D viscous Boussinesq equation in \mathbb{T}^{2} with no density diffusivity:

$$
\left\{\begin{array}{l}
\rho_{t}+u \cdot \nabla \rho=0 \\
u_{t}+u \cdot \nabla u=-\nabla p-\rho e_{2}+\Delta u \\
\nabla \cdot u=0
\end{array}\right.
$$

- Global well-posedness in $H^{s-1} \times H^{s}$: Hou-Li '05, Chae '06, Larios-Lunasin-Titi '13, Hu-Kukavica-Ziane '13 \& '15.
- Upper bound on $\|\rho(t)\|_{H^{1}}$: Ju '17 (double exp growth), Kukavica-Wang '19 (exp growth)
- But can $\|\rho\|_{H^{1}}$ grow to infinity as $t \rightarrow \infty$?

Theorem (Kiselev-Park-Y. '22, preprint)

There exists smooth initial data ρ_{0}, u_{0} in \mathbb{T}^{2} such that the global-in-time smooth solution (ρ, u) satisfies $\lim \sup _{t \rightarrow \infty} t^{-1 / 6}\|\rho(t)\|_{H^{1}}=\infty$.

- The proof has a similar flavor as the IPM case, but it's more delicate since the potential energy is not monotone for Boussinesq.

Inviscid 2D Boussinesq equation

- In the inviscid case, let us work with the variables ρ and vorticity ω :

$$
\left\{\begin{array}{l}
\rho_{t}+u \cdot \nabla \rho=0 \\
\omega_{t}+u \cdot \nabla \omega=-\partial_{1} \rho
\end{array}\right.
$$

where u can be recovered from the Biot-Savart law $u=\nabla^{\perp}(-\Delta)^{-1} \omega$.

- Whether smooth initial data can lead to a blow-up in \mathbb{T}^{2} or \mathbb{R}^{2} is an outstanding open question.
- It is well-known that away from the axis of symmetry, the 3D axisymmetric Euler equation is closely related to 2D Boussinesq:

$$
\left\{\begin{array}{l}
D_{t}\left(r u^{\theta}\right)=0, \\
D_{t}\left(\frac{\omega^{\theta}}{r}\right)=r^{-4} \partial_{z}\left(r u^{\theta}\right)^{2}
\end{array}\right.
$$

where $D_{t}:=\partial_{t}+u^{r} \partial_{r}+u^{z} \partial_{z}$ is the material derivative, and (u^{r}, u^{z}) can be recovered from ω^{θ} / r by a similar Biot-Savart law.

Blow-up for inviscid 2D Boussinesq and 3D Euler

In the presence of boundary, or for non-smooth initial data, there are many exciting developments on finite-time blow-up:

- Luo-Hou '14: convincing numerical evidence for blow-up at the boundary for 3D axisymmetric Euler
- Elgindi-Jeong '20: blow-up in domain with a corner
- Elgindi '21: blow-up for $C^{1, \alpha}$ solutions for 3D Euler
- Chen-Hou '21: blow-up for $C^{1, \alpha}$ solutions with boundary
- Wang-Lai-Gómez-Serrano-Buckmaster '22: numerics for approximate self-similar blow-up solution using physics-informed neural networks.
- Chen-Hou '22: stable nearly self-similar blowup for smooth solutions (combination of analysis + computer-assisted estimates)

Question: Can one construct solutions with infinite-in-time growth for more general class of initial data?

Infinite-in-time growth in a strip

Theorem (Kiselev-Park-Y. '22, preprint)

Let $\Omega=\mathbb{T} \times[0, \pi]$. Let $\rho_{0} \in C^{\infty}(\Omega)$ be even in x_{1}, and $\omega_{0} \in C^{\infty}(\Omega)$ be odd in x_{1}, with $\int_{[0, \pi] \times[0, \pi]} \omega_{0} d x \geq 0$. Assume that there exists $k_{0}>0$ such that $\rho_{0} \geq k_{0}>0$ on $\{0\} \times[0, \pi]$, and $\rho_{0} \leq 0$ on $\{\pi\} \times[0, \pi]$. Then the solution satisfies the following during its lifespan:

$$
\begin{gathered}
\|\omega(t)\|_{L^{p}(\Omega)} \gtrsim t^{3-\frac{2}{p}} \\
\|u(t)\|_{L^{\infty}(\Omega)} \gtrsim t \\
\sup _{\tau \in[0, t]}\|\nabla \rho(\tau)\|_{L^{\infty}(\Omega)} \gtrsim t^{2} .
\end{gathered}
$$

The proof is a soft argument, based on an interplay between various monotone and conservative quantities.

Monotonicity of vorticity integral

- Let Q be the right half of the strip. Simple but useful observation:

- Since $\int_{\partial Q} u \cdot d l=\int_{Q} \omega d x \geq k_{0} \pi t$, we have $\|u(t)\|_{L^{\infty}}$ grows at least linearly.
- On the other hand, $\|u\|_{L^{2}}$ is bounded for all times by energy conservation.
- Combining the boundedness of $\|u\|_{L^{2}(Q)}$ and linear growth of $\int_{\partial Q} u \cdot d l$, we know u must change rapidly in a small neighborhood of ∂Q, leading to super-linear growth of $\nabla u($ and $\omega)$.

3D axisymmetric Euler in an annular cylinder

Using a similar idea, we obtain infinite-in-time growth for the 3D axisymmetric Euler equation in an annular cylinder

$$
\Omega=\{(r, \theta, z): r \in[\pi, 2 \pi] ; \theta \in \mathbb{T}, z \in \mathbb{T}\} .
$$

Theorem (Kiselev-Park-Y. '22, preprint)

Let $u_{0}^{\theta} \in C^{\infty}(\Omega)$ be even in $z, \omega_{0}^{\theta} \in C^{\infty}(\Omega)$ odd in z, with $\int_{0}^{\pi} \int_{\pi}^{2 \pi} \omega_{0}^{\theta} d r d z \geq 0$. Assume there exists $k_{0}>0$ such that $u_{0}^{\theta} \geq k_{0}>0$ on $z=\pi$, and $\left|u_{0}^{\theta}\right| \leq \frac{1}{8} k_{0}$ on $z=0$. Then the solution to axisymmetric $3 D$ Euler satisfies

$$
\left\|\omega^{\theta}(t)\right\|_{L^{p}(\Omega)} \gtrsim t^{3-\frac{2}{p}} \quad \text { and } \quad\|u(t)\|_{L^{\infty}(\Omega)} \gtrsim t
$$

during the lifespan of the solution.

Thank you for your attention!

