Kähler-Einstein metric, K-stability and moduli spaces

PKU Mathematics Forum

Chenyang Xu (Princeton University)

2023/8/3

PKU Mathematics Forum Algebraic K-stability

ヘロト ヘアト ヘビト ヘビト

3

- Part 1: Kähler-Einstein Problem of Fano varieties
- Part 2: Moduli of Fano varieties
- Part 3: Higher rank finite generation

ヘロン 人間 とくほ とくほ とう

E DQC

- X is a complex manifold. Let g be a Hermitian metric on X.
- (Kähler 1933) Kähler metric: g can be locally written as $\frac{\partial^2 f}{\partial z_\alpha \partial \bar{z}_\beta} dz_\alpha \otimes d\bar{z}_\beta$. This is true if and only if the associated form ω_g satisfies $d\omega_g = 0$.
- ∂∂̄-Lemma: two Kähler forms ω₁ and ω₂ are in the same class, if and only if ω₁ − ω₂ = i∂∂φ for some φ.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Kähler-Einstein metrics

- Kähler-Einstein problem (Kähler 1933, Calabi 1950s): find a Kähler metric ω such that Ric(ω) = λω for a constant λ.
- $[\operatorname{Ric}(\omega)] = c_1(X).$
- dim = 1, Poincaré Uniformization Theorem.
- $\lambda = 0$ or -1, solved by Yau and Aubin/Yau in 70s.
- (Matsushima 57) λ = 1, i.e. X is Fano, there is an obstruction: X has KE implies Aut(X) is reductive.
- Program: Characterize when $Ric(\omega) = \omega$ has a solution.
- More Ambitious Program: parametrizing them using good moduli spaces.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

・ロト・「日下・「日下・「日下」 シック

Variational method

- Fix ω_0 with $[\omega_0] = c_1(X)$, write $\omega \omega_0 = i\partial\bar{\partial}\varphi$ and $\omega_0 \operatorname{Ric}(\omega_0) = i\partial\bar{\partial}F$.
- Then $\operatorname{Ric}(\omega) = \omega$ is equivalent to the complex Monge-Ampere equation

$$(\omega_0 + i\partial\bar{\partial}\varphi)^n = e^{F-\lambda\varphi}\omega_0^n.$$

• Let $\mathcal{H} = \{\varphi | \omega_0 + i\partial \overline{\partial} \varphi > 0\}$. Mabuchi(86): there is a K-energy functional (Mabuchi functional)

$$M: \mathcal{H} \to \mathbb{R},$$

such that a critical point of *M* precisely corresponds to the solution of the complex Monge-Ampere equation, i.e. a Kähler-Einstein metric.

• Ding (88): Ding functional $D: \mathcal{H} \to \mathbb{R}$ with the same property.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Finite dimensional toy model: GIT

- A reductive group $G = K^{\mathbb{C}}$ acts on a polarized manifold (X, L).
- Let $\|\cdot\|$ be a *K*-invariant norm on *L*.
- For $x \in X$, we define the function

$$f: G/K \to \mathbb{R}, g \to \log \|g \cdot \hat{x}\|,$$

where $\hat{x} \in L_x$ is a non-zero lift of x.

- $\xi: \mathbb{C}^* \to G/K$ gives geodesic. $\lim_{t\to\infty} f'(e^{it\xi} \cdot x) = w_{\xi}$: the weight of the \mathbb{C}^* -action on L_{x_0} where $x_0 = \lim_{\lambda\to 0} \lambda \cdot x$.
- f has a unique minimum

$$\iff \lim_{t \to \infty} f'(e^{it\xi} \cdot x) > 0 \text{ for any } \xi \in \operatorname{Lie}(K)_{\mathbb{R}}$$
$$\iff w_{\xi} > 0 \text{ for all } \xi \in \operatorname{Lie}(K)_{\mathbb{Q}} \text{ (Kempf-Ness)}$$
$$\iff x \text{ is } \operatorname{GIT } \operatorname{stable} \text{ (Hilbert-Mumford)}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Yau-Tian-Donaldson Conjecture

- (Yau 80s) The existence of a KE metric on a Fano manifold should relate to 'algebraic stability' theory.
- (Ding-Tian 92, Tian 97) Consider X → A¹ a C*-equivariant degeneration X ⊂ P^N of X ^{|-rK_X|}→ P^N by C* → PGL(N + 1). X has KE implies Fut(X) ≥ 0.
- Tian (97) defined K-(semi,poly)stability notions, by looking at the sign of Fut(X) for all X (for all r).
- (Donaldson 02) Reformulate Futaki invariants in algebraic terms.

Theorem (YTD Conjecture)

For a Fano variety, it has a KE metric if and only if it is K-(poly)stable.

Remark

We will see, the algebraic part of solving this problem is contained in the bigger program of constructing moduli spaces.

PKU Mathematics Forum Algebraic K-stability

くりょう 小田 マイボット 山下 シックション

Easy direction and Ding stability

Theorem (Tian 97, Berman 12)

The existence of a unique KE metric implies K-stability.

•
$$\sigma_t: t \to e^{-t} \in \mathbb{C}^*$$
 and $\lim_{t \to +\infty} \frac{dM(\frac{1}{t}\sigma_t^*\omega_{FS})}{dt} = \operatorname{Fut}(\mathcal{X}).$

• Berman introduced the notion of Ding stability.

- Ding stability fits better into higher dimensional geometry.
- The algebraic foundation: transfers from GIT to minimal model program (MMP).
- (Fujita) Ding stability is equivalent to K-stability, following from Li-X's specialization theory.

Characterizing K-stability using valuations

- Let A_X(E) := mult_E(K_{Y/X}) + 1 be the log discrepancy of E on a birational model µ: Y → X. X is Kawamata log terminal (klt) if A_X(E) > 0 for all E.
- S_X(E) is the expected vanishing order, i.e.,

$$S_X(E) = \frac{1}{(-K_X)^n} \int_0^\infty \operatorname{vol}(\mu^*(-K_X) - tE) dt.$$

• Set the stability function $\delta(X) = \inf_E \frac{A_X(E)}{S_X(E)}$. (If $\delta \le 1$, $\delta = \sup\{t \mid \operatorname{Ric}(\omega) = t\omega + (1 - t)\omega_0\}$)

Theorem (Fujita-Li Criterion)

Uniform K-stability $\iff \delta(X) > 1$; K-stability $\iff \frac{A_X(E)}{S_X(E)} > 1$ for all E.

PKU Mathematics Forum

Algebraic K-stability

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Optimal destabilization

Theorem (Optimal Destablization, Liu-X.-Zhuang 21)

If $\delta(X) < \frac{n+1}{n}$, then there exists a divisor *E*, such that $\delta(X) = \frac{A_X(E)}{S_X(E)}$.

- This settles the compactedness of the moduli space of K-polystable Fano varieties.
- The case $\delta(X) = 1$ says (uniform K-stability) = (K-stability).
- The technical core is a higher rank finite generation theorem.

Theorem (Berman-Boucksom-Jonsson 15, Li-Tian-Wang 19, Li 19, Zhang 21)

For a general (possibly singular) Fano X, the uniform K-stability, implies the existence of a unique KE.

• Study the geometry of the space \mathcal{E}^1 of ω_0 -psh functions with finite energy, which is a completion of \mathcal{H} .

・ロト ・ 理 ト ・ ヨ ト ・

くりょう 小田 マイボット 山下 シックション

PKU Mathematics Forum Algebraic K-stability

Theorem (Chen-Donaldson-Sun 12, Tian 12)

For a smooth Fano manifold, K-stability implies the existence of a KE.

• Continuity method: Fix a smooth $D \sim -mK_X$,

$$t_0 = \inf \left\{ t \mid \operatorname{Ric}(\omega) = (1 - t)\omega + \frac{t}{m}[D] \text{ is solvable} \right\}$$

Compactedness says

$$t_i \searrow t_0, (X, \frac{t_i}{m}D, \omega_{i, \mathit{KE}}) \xrightarrow{\mathrm{GH}} (X_0, \frac{t_0}{m}D_0, \omega_{0, \mathit{KE}})$$

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

and $X \ncong X_0$. There is a \mathbb{G}_m -degeneration \mathcal{X} of $X \rightsquigarrow X_0$ with $\operatorname{Fut}(\mathcal{X}) \leq 0$.

Part 2: Moduli of Fano varieties

PKU Mathematics Forum Algebraic K-stability

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

There has been a long history for people trying to parametrize varieties, going back to Abel, Jacobi, Riemann, Weierstrass, Teichmuller etc.

General moduli theory for $K_X > 0$:

- Curves of higher genus g (g ≥ 2): M_g, Mumford's geometric invariant theory (GIT); Deligne-Mumford compactification: M_g.
- Kollár-Shepherd-Barron (KSB) theory (88) proposes generalizing Deligne-Mumford construction to higher dimensions. By late 2010s, the program is completed, and there is a compact moduli parametrizing X with ample K_X.
- It is intertwining with the progress of the minimal model program theory (MMP).

・ロン ・四 と ・ ヨ と ・ ヨ と …

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

For Fano varieties, no algebraic geometers thought about constructing moduli for Fano varieties before 2010, since it seems impossible.....

- No natural extrinsic theory, in particular GIT does not fit.
- Li-X. (12): Families of Fano varieties: a family of Fano manifolds X° → Δ°, MMP often yields many possible Fano limits X₀, but no canonical choice.
- Solution: There is a stratification of the moduli stack of all Fano varieties. K-(semi)stable ones yields moduli.

ヘロン 人間 とくほ とくほ とう

э.

Theorem (K-moduli stack/space)

- $\mathfrak{X}_{n,V}^{\text{Kss}} = [Z/G]$ for a quasi-projective scheme Z and G = PGL(N+1) for some N = N(n, V).
- 3 $\mathfrak{X}_{n,V}^{\text{Kss}}$ admits a separated good moduli space $X_{n,V}^{\text{Kps}}$, whose points correspond to K-polystable Fano varieties.
 - (The ℂ-points X^{Kps}_{n,V}(ℂ) precisely correspond to KE ones).
- 3 $X_{n,V}^{\text{Kps}}$ is a proper.
- the CM line bundle is ample on $X_{n,V}^{\text{Kps}}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- For a stack \mathfrak{X} , having a (separated) good moduli space X is a subtle property.
- (Étale) locally over $X, \mathfrak{X} \to X$ is covered by

 $[\operatorname{Spec}(A)/G] \to \operatorname{Spec}(A^{\mathrm{G}}),$

where *G* is a reductive group. We use a valuative criterion by Alper-Halpern-Leistner-Heinloth18 to check $\mathfrak{X}_{n,v}^{\text{Kss}}$.

- Study families of K-semistable Fano varieties over (equivariant) surfaces (Li-Wang-X.18, Blum-X.18, A-Blum-HL-X.19).
- Corollary: For a K-polystable Fano variety X, Aut(X) is reductive.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- Special theory: special degeneration (Li-X. 12) vs special valuations (Blum-Liu-X. 19).
- Positivity of CM line bundle: connecting stability of fibers with Harder-Narashimhan filtration of the base (Codogni-Patakfalvi 18, X-Zhuang 19).
- Local singularity theory: Li's normalized volume (15), Stable Degeneration Conjecture (X-Zhuang 22 etc.).
- Explicit verification: estimating δ(X) by the Abban-Zhuang method, moduli method (Liu and others).

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 ● ④ ● ●

Part 3: Higher rank finite generation

PKU Mathematics Forum Algebraic K-stability

ヘロア 人間 アメヨア 人口 ア

æ

Higher rank finite generation

• Space of valuations $\operatorname{Val}(X)$: $v \colon K(X) \setminus \{0\} \to \mathbb{R}, v(\mathbb{C}) = 0,$ $v(xy) = v(x) + v(y), v(x+y) \ge \min\{v(x), v(y)\}.$

The function

$$\delta: \mathbf{v} o \mathbf{A}_{\mathbf{X}}(\mathbf{v})/\mathbf{S}_{\mathbf{X}}(\mathbf{v})$$

can be defined for any nontrivial valuations $v \in Val(X)$ with $A_X(v) < +\infty$.

Theorem (HRFG: δ -minimizer, Liu-X.-Zhuang 21)

Assume $\delta(X) < \frac{n+1}{n}$. Let *v* be a valuation which computes $\delta(X)$, then $\operatorname{gr}_{v}R$ is finitely generated for $R := \bigoplus_{m} H^{0}(-mK_{X})$, where $\operatorname{gr}_{v}R = \bigoplus_{m} \bigoplus_{\lambda} \mathcal{F}^{\lambda}R_{m}/\mathcal{F}^{>\lambda}R_{m}$, and

 $\mathcal{F}^{\lambda}R_m(\text{resp. }\mathcal{F}^{>\lambda}R_m) = \{s \in H^0(-mK_X) \mid v(s) \ge (\text{resp. }>)\lambda\}.$

• The finite generation brings back the problem to a finite level. Once it is known, a small rational perturbation v' of v yields a divisorial minimizer of δ as predicted by the optimal destabilization theorem.

Minimizers on special model

Special model (dlt Fano type model): μ: (Y, E = ∑_{i=1}^r E_i) → X is a birational model, such that -K_Y - E - Δ is ample for some Δ ≥ 0, and (Y, E) is simple normal crossing over the generic point η of ∩_{i=1}^r E_i.

Theorem (Li-X.17, Blum-Liu-X. 19, Liu-X.-Zhuang 21, X-Zhuang 22)

Assume $\delta(X) < \frac{n+1}{n}$. A minimizer of δ exists and is monomial over $\eta \in (Y, E)$, where (Y, E) is a special model.

• One needs major boundedness results from birational geometry, e.g. Hacon-McKernan-X. 12, Birkar 16 etc..

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (HRFG: birational version, X-Zhuang 22)

Let μ : $(Y, E = \sum_{i=1}^{r} E_i) \rightarrow X$ be a special model. Then for any valuation v monomial over $\eta \in (Y, E)$, $\operatorname{gr}_{v} R$ is finitely generated.

- If v is a divisorial valuation ord_E, this directly follows from the minimal model program.
- For a higher rank valuation, this posts a substantial new challenge.

Remark

We also complete the Stable Degeneration Conjecture (Li15, Li-X.17) in local K-stability theory for klt singularities.

・ロット (雪) () () () ()

Thank you very much!

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○