Perverse sheaves and positivity of Euler characteristics

Botong Wang
University of Wisconsin-Madison

Peking University Mathematics Forum
BICMR

August 5, 2023

Some motivating questions and results

Conjecture (Singer-Hopf)

Let M be a compact $2 d$-dimensional Riemannian manifold. If
(1) M has non-positive sectional, or
(2) M is aspherical, i.e., the universal covering space of M is contractible, then its Euler characteristic satisfies

$$
(-1)^{d} \chi(M) \geq 0
$$

- For any odd-dimensional compact manifold $M, \chi(M)=0$.
- By Cartan-Hadamard theorem, having non-positive sectional curvature implies aspherical. So the aspherical version is stronger.

Some motivating questions and results

- The conjecture is obvious for Riemann surfaces.

$$
g(C)
$$

0 ≥ 2
curvature
universal cover
$-\chi(C)$
\mathbb{P}^{1}
-2
0
≥ 2

- If a compact Riemannian 4-manifold M has non-positive sectional curvature, then Gauss-Bonnet theorem implies that $\chi(M) \geq 0$. The aspherical version of the conjecture is open for 4-manifolds.

Some motivating questions and results

Theorem (Gabber-Loeser, Franecki-Kapranov, Schnell, Krämer,

Let X be a smooth closed subvariety of an affine torus $\left(\mathbb{C}^{*}\right)^{n}$, or an abelian variety A, (or a semi-abelian variety), then

$$
(-1)^{\operatorname{dim}_{\mathbb{C}} X} \chi(X) \geq 0
$$

There are examples of aspherical manifolds as subvarieties of abelian varieties, e.g., all Riemann surfaces of genus at least 1 . So this theorem does cover some special cases of the Singer-Hopf conjecture.

Theorem (Seade-Tibăr-Verjovsky, Maxim-Rodriguez-W.)

Let $X \subset \mathbb{C}^{n}$ be a smooth closed subvariety, and let $H \subset \mathbb{C}^{n}$ be a general affine hyperplane. Then,

$$
(-1)^{\operatorname{dim}_{\mathbb{C}} X} \chi(X \backslash H) \geq 0
$$

Some motivating questions and results

The above two theorems are also related to the complexity of algebraic optimization problems.

Theorem (Franechi-Kapranov, Huh)

Let $X \subset\left(\mathbb{C}^{*}\right)^{n}$ be a smooth closed subvariety. Then
$(-1)^{\operatorname{dim}_{C} X} \chi(X)=$ the number of critical points of $\left.f_{\mathbf{u}}\right|_{X}$
where $f_{\mathbf{u}}=\prod_{1 \leq i \leq n} x_{i}^{u_{i}}$ and $u_{i} \in \mathbb{Z}$ are general.

Theorem (Seade-Tibăr-Verjovsky, Maxim-Rodriguez-W.)

Let $X \subset \mathbb{C}^{n}$ be a smooth closed subvariety, and let $H \subset \mathbb{C}^{n}$ be a general affine hyperplane. Then

$$
(-1)^{\operatorname{dim}_{\mathbb{C}} X} \chi(X \backslash H)=\text { the number of critical points of }\left.I_{\mathbf{u}}\right|_{X}
$$

where $I_{\mathbf{u}}=\prod_{1 \leq i \leq n} u_{i} x_{i}$ is a general linear function.

Some motivating questions and results

Let G be a complex semi-simple linear algebraic group, and let P be a parabolic subgroup. Then G / P is a partial flag variety. The following result was conjectured independently by Knutson-Zinn-Justin and Mihalcea.

Theorem (Schürman-Simpson-W.)

Given any three Schubert cells $X_{\lambda}^{\circ}, X_{\mu}^{\circ}, X_{v}^{\circ}$, and two general element $g, h \in G$, let $Z=X_{\lambda}^{\circ} \cap g X_{\mu}^{\circ} \cap h X_{v}^{\circ}$. Then

$$
(-1)^{\operatorname{dim} Z} \chi(Z) \geq 0
$$

- We know that $\chi\left(X_{\lambda}^{\circ}\right)=1$ and $\chi\left(X_{\lambda}^{\circ} \cap g X_{\mu}^{\circ}\right)=0$ or 1 .
- When G / P is the r-step partial flag variety of type A , and when $r \leq 3$, Knutson and Zinn-Justin have a combinatorial formula for $(-1)^{\operatorname{dim} Z} \chi(Z)$, which implies its non-negativity.
- Such $\chi(Z)$ is the structure constant for the multiplication of the Segre-Schwartz-MacPherson classes of these Schubert cells.

Perverse sheaves

A perverse sheaf on a complex algebraic variety is a bounded complex of constructible sheaves subject to certain conditions.

Example

Let X be a smooth complex algebraic variety, and let Y be a smooth closed subvariety of X. Then $\mathbb{Q}_{Y}[\operatorname{dim} Y]$ is a perverse sheaf. Here, $\underline{\mathbb{Q}}_{Y}[\operatorname{dim} Y]$ is the complex of sheaves

$$
\cdots \rightarrow 0 \rightarrow \mathbb{Q}_{Y} \rightarrow 0 \rightarrow \cdots
$$

where \mathbb{Q}_{Y} is at degree $-\operatorname{dim} Y$. In particular, $\underline{\mathbb{Q}}_{X}[\operatorname{dim} X]$ is a perverse sheaf on X.

Given a bounded complex of constructible sheaves, $\mathscr{F}^{\bullet}=\left(\mathscr{F}^{i}, d^{i}\right)$, the Euler characteristic of \mathscr{F}^{\bullet} is defined to be

$$
\chi\left(\mathscr{F}^{\bullet}\right):=\sum_{i \in \mathbb{Z}}(-1)^{i} \chi\left(\mathscr{F}^{i}\right)
$$

In particular, $\chi\left(\underline{\mathbb{Q}}_{X}[\operatorname{dim} X]\right)=(-1)^{\operatorname{dim} X} \chi\left(\underline{\mathbb{Q}}_{X}\right)=(-1)^{\operatorname{dim} X} \chi(X)$.

Perverse sheaves

The conjectures and results we have seen so far all have generalizations or analogues in terms of perverse sheaves.

Theorem (Gabber-Loeser, Franecki-Kapranov, Schnell, Krämer, ...)

Let \mathscr{F}^{\bullet} be any perverse sheaf on $\left(\mathbb{C}^{*}\right)^{n}$. Then $\chi\left(\mathscr{F}^{\bullet}\right) \geq 0$.

Theorem (Seade-Tibăr-Verjovsky)

Let $\mathscr{F} \cdot$ be any perverse sheaf on \mathbb{C}^{n}, and let H be a general affine hyperplane in \mathbb{C}^{n}. Then, $\chi\left(\left.\mathscr{F}^{\bullet}\right|_{\mathbb{C}^{n} \backslash H}\right) \geq 0$.

Theorem (Simpson-Schürman-W.)

Let A and B (e.g., Schubert cells or their generic intersections) are two smooth affine locally closed subvarieties of a partial flag variety G / P. Let $\mathscr{F} \bullet$ be a perverse sheaf on A, and let $g \in G$ be a general element. Then

$$
(-1)^{\operatorname{codim} B} \chi\left(\left.\mathscr{F}^{\bullet}\right|_{A \cap g B}\right) \geq 0
$$

Perverse sheaves

- The last theorem implies the triple intersection theorem of Schubert cell, by taking $A=X_{\lambda}^{\circ} \cap g X_{\mu}^{\circ}, B=X_{v}^{\circ}$ and $\mathscr{F}^{\bullet}=\underline{\mathbb{Q}}_{A}[\operatorname{dim} A]$.
- In general, the restriction of a perverse sheaf to a (transversal) smooth subvariety becomes a perverse sheaf after shifting by the codimension of the subvariety. More precisely, the in setting of the last theorem,

$$
\left.\mathscr{F}^{\bullet}\right|_{A \cap g B}[-\operatorname{codim} B]
$$

is a perverse sheaf, and the theorem can be reformulated as

$$
\chi\left(\left.\mathscr{F} \bullet\right|_{A \cap g B}[-\operatorname{codim} B]\right) \geq 0 .
$$

- If we let $G / P=\mathbb{P}^{n}$ and $A=B=\mathbb{C}^{n}$, then for a general $g \in G$, $A \cap g B=\mathbb{C}^{n} \backslash H$, where H is a general affine hypersurface. So the last theorem implies the earlier theorem stating that for a perverse sheaf \mathscr{F}^{\bullet} on \mathbb{C}^{n},

$$
\chi\left(\left.\mathscr{F}^{\bullet}\right|_{\mathbb{C}^{n} \backslash H}\right) \geq 0
$$

Perverse sheaf analog for Singer-Hopf conjecture

Conjecture (Liu-Maxim-W., Arapura-W.)

Let X be a smooth complex projective variety. If
(1) X is aspherical, or
(2) X has large fundamental group, i.e., for any Riemann surface C and any non-constant map $f: C \rightarrow X, f_{*}: \pi_{1}(C) \rightarrow \pi_{1}(X)$ has infinite image, (equivalently, the universal cover \widetilde{X} does not contain any positive-dimensional compact analytic subvariety) then any perverse sheaf \mathscr{F}^{\bullet} on X satisfies $\chi\left(\mathscr{F}^{\bullet}\right) \geq 0$.

It is a simple fact that aspherical projective varieties have large fundamental group. However, conversely, only a small portion of varieties with large fundamental group are aspherical. In fact, if X has large fundamental group, then any subvariety of X also has large fundamental group.

Perverse sheaf analog for Singer-Hopf conjecture

Theorem (Liu-Maxim-W., Arapura-W.)

Let X be a smooth complex projective variety. Assume that
(1) the cotangent bundle $T^{*} X$ is nef (certain positivity condition), or
(2) the Kähler metric on X has non-positive sectional curvature.

Then, for any perverse sheaf $\mathscr{F} \bullet$ on $X, \chi\left(\mathscr{F}^{\bullet}\right) \geq 0$. In particular, the curvature version of Singer-Hopf conjecture holds for all complex smooth projective varieties, which is a result of Gromov, Jost-Zuo, Cao-Xavier.

Standard curvature calculation shows that
X has non-positive sectional curvature
$\Rightarrow X$ has non-positive holomorphic bisectional curvature $\Rightarrow T^{*} X$ is nef.

So the nef version of the theorem is stronger.

Theorem (Arapura-W.)

Let X be a smooth complex projective variety with large fundamental group (or simply, aspherical). Suppose that there exists a cohomologically rigid almost faithful semi-simple representation $\rho: \pi_{1}(X) \rightarrow \mathrm{Gl}_{n}(\mathbb{C})$. Then for any perverse sheaf \mathscr{F}^{\bullet} on $X, \chi\left(\mathscr{F}^{\bullet}\right) \geq 0$.

Even though the assumption is extremely strong, it can be formulated purely topologically. In contrast, all the previously known results have some geometric assumption.

Ideas of the proofs

Theorem (Liu-Maxim-W.)

Let X be a smooth complex projective variety. If $T^{*} X$ is nef, then for any perverse sheaf \mathscr{F}^{\bullet} on $X, \chi\left(\mathscr{F}^{\bullet}\right) \geq 0$.

Kashiwara's index theorem states that $\chi\left(\mathscr{F}^{\bullet}\right)$ can be expressed as certain intersection numbers of algebraic cycles in $T^{*} X$. More precisely,

$$
\chi\left(\mathscr{F}^{\bullet}\right)=\text { zero section } \cdot C C\left(\mathscr{F}^{\bullet}\right) \text { in } T^{*} X,
$$

where $C C\left(\mathscr{F}^{\bullet}\right)$ is the characteristic cycle of \mathscr{F}^{\bullet}. For example, $C C\left(\underline{\mathbb{Q}}_{X}[\operatorname{dim} X]\right)$ is equal to the zero section of $T^{*} X$.

A theorem of Fulton-Lazarsfeld and Demailly-Peternell-Schneider states that in a nef vector bundle E on a smooth complex projective variety X, the intersection number

$$
\text { zero section } \cdot \text { any conic cycle } \geq 0
$$

We are done, because all characteristic cycles are conic.

Ideas of the proofs

Theorem (Arapura-W.)

Let X be a smooth complex projective variety with large fundamental group (or simply aspherical). Suppose that there exists a cohomologically rigid almost faithful semi-simple representation $\rho: \pi_{1}(X) \rightarrow \mathrm{Gl}_{n}(\mathbb{C})$. Then for any perverse sheaf \mathscr{F}^{\bullet} on $X, \chi\left(\mathscr{F}^{\bullet}\right) \geq 0$.

- Let L_{ρ} be the local system associated to the representation ρ. By Simpson's theorem, the rigidity of ρ implies that L_{ρ} supports a variation of complex Hodge structure.
- By a theorem of Esnault-Groechenig, the variation of Hodge structure can be chosen to be defined over \mathbb{Z}. Then we have a period map $\varphi: X \rightarrow D / \Gamma$.
- The fact that X has large fundamental group implies that φ is finite.
- It is well-known that D / Γ has negative bisectional curvature (along horizontal directions and φ is along horizontal directions). This gives us some desired curvature condition on X, and then we can follow the previous proof of the nef case.

Ideas of the proofs

Theorem (Gabber-Loeser, Franecki-Kapranov)

Let $\mathscr{F} \bullet$ be any perverse sheaf on $\left(\mathbb{C}^{*}\right)^{n}$. Then $\chi\left(\mathscr{F}^{\bullet}\right) \geq 0$.
This has several proofs, using Morse theory, intersection theory, or vanishing theorem. We present the vanishing theorem proof here.

Theorem (Gabber-Loeser)

Under the above notations, let L be a general rank one \mathbb{C}-local system on $\left(\mathbb{C}^{*}\right)^{n}$. Then

$$
H^{i}\left(\left(\mathbb{C}^{*}\right)^{n}, \mathscr{F} \bullet \otimes_{\mathbb{C}} L\right)=0 \quad \text { for any } i \neq 0
$$

Therefore,

$$
\chi(\mathscr{F} \cdot)=\chi\left(\mathscr{F} \bullet \otimes_{\mathbb{C}} L\right)=\operatorname{dim} H^{0}\left(\left(\mathbb{C}^{*}\right)^{n}, \mathscr{F} \bullet \otimes_{\mathbb{C}} L\right) \geq 0 .
$$

Ideas of the proofs

Theorem (Schürman-Simpson-W.)

Let A and B (e.g., Schubert cells or their generic intersections) are two smooth affine locally closed subvarieties of a partial flag variety G / P. Let $\mathscr{F} \cdot$ be a perverse sheaf on A, and let $g \in G$ be a general element. Then

$$
(-1)^{\operatorname{codim} B} \chi\left(\left.\mathscr{F}^{\bullet}\right|_{A \cap g B}\right) \geq 0
$$

Let $i_{B}: A \cap g B \rightarrow A$ and $i_{A}: A \rightarrow X$ be the inclusion maps. Then

$$
H^{i}\left(X, i_{A *} i_{B!}\left(\left.\mathscr{F} \bullet\right|_{A \cap g B}[-\operatorname{codim} B]\right)\right)=0 \quad \text { for any } i \neq 0 .
$$

Now, we have

$$
\begin{aligned}
(-1)^{\operatorname{codim} B} \chi\left(\left.\mathscr{F}^{\bullet}\right|_{A \cap g B}\right) & =\chi\left(i_{A *} i_{B!}\left(\left.\mathscr{F} \bullet\right|_{A \cap g B}[-\operatorname{codim} B]\right)\right) \\
& =\operatorname{dim} H^{0}\left(X, i_{A *} i_{B!}\left(\left.\mathscr{F} \bullet\right|_{A \cap g B}[-\operatorname{codim} B]\right)\right) \\
& \geq 0 .
\end{aligned}
$$

Question

Can we extend any of the above theorems to varieties over a general field?

Thank you!

