- Example: the smash product symmetric monoidal structure on Sp: the ∞ -category Sp of spectra admits a symmetric monoidal structure, which is uniquely determined by the following properties:
- (a) The bifunctor &: Sp \times Sp \longrightarrow Sp preserves small colimits separatedly in each variable.
- (b) The unit object of Sp is the sphere spectrum S.
- Lurie's construction: Consider the cartesian symmetric monoidal structure on $P_r^{St} \subset Cat_{\infty}$, spanned by presentable stable ∞ -categories and colimit-preserving functors. Realize Sp as the unit object of P_r^{St} .
- 3. Algebra in the stable homotopy category
- 3.1 Rings and modules

Sequences of
$$\infty$$
-operads: $E_0^{\varnothing} \hookrightarrow E_1^{\varnothing} \to E_2^{\varnothing} \longrightarrow \cdots \longrightarrow E_{\infty}^{\varnothing}$

$$51 \\ \text{Assoc}^{\varnothing} \qquad \qquad Comm^{\varnothing} = Fin_{*}$$

$$E_k^{\varnothing} : \infty$$
-operad of little k-cubes

- Def: An E_k -ring is an E_k -algebra object of Sp. Let $Alg^{(k)}:=Alg_{E_k}(Sp)$ Let $Alg:=Alg^{(1)}$, $CAlg:=Alg^{(\omega)}$.
- Def: R E, -ring. LMode:= LMode(Sp) the or-cat of left R-modules.

HA7.1.1.5: R E, -ring. The os-cat LMode and RMode are stable.

 $R E_1 - ring$. $\forall n \in \mathbb{Z}$, $\pi_n R := n - th$ homotopy group of the underlying spectrum.

Recall adjunction: Σ_{+}^{∞} : S = Sp(S): Ω^{∞} we have $\pi_{n}R \simeq \pi_{o}Map_{Sp}(S[n], R)$,

 \varnothing exact in each variable \Rightarrow $S[n] \varnothing S[m] \simeq S[n+m] \ \forall n, m \in \mathbb{Z}$.

 $Map_{sp}(S[n],R) \times Map_{sp}(S[m],R) \longrightarrow Map_{sp}(S[n] \otimes S[m],R \otimes R) \longrightarrow Map_{sp}(S[nm],R)$

---> bilinear map πnR×πmR --> πn+mR

 \sim a graded associative ring structure on $\pi_*R := \bigoplus_n \pi_n R$.

If R is an \mathbb{E}_{k} -ring for $k \ge 2$, then the multiplication on $\pi_{*}R$ is graded commutative, i.e. $\forall x \in \pi_{n}R$, $y \in \pi_{m}R$, we have $xy = (-1)^{nm}yx$.

In particular, $\pi_0 R$ is a commutative ring. $\forall n \in \mathbb{Z}$, $\pi_n R$ is a module over $\pi_0 R$.

R E,-ring, M left R-module. The action map $R \otimes M \longrightarrow M$

→ bilinear maps πnR×πmM → πnm M

 $\pi_{A}M := \bigoplus_{n} \pi_{n}M$ has the structure of a graded left module over $\pi_{*}R$.

Def: A spectrum X is connective if $\pi_n X \cong D$ for n < 0.

Span C Sp full subcat spanned by connective spectra.

An Ex-ring is connective if its underlying spectrum is connective.

Algen C Alg, CAlgen C CAlg,

Notation: $R \ E_1 - ring$. $L Mod_R^{>0} \subset L Mod_R$ spanned by R-modules M with $\pi_n M = 0 \ \forall n < 0$. $L Mod_R^{\leq 0}$

 $M, N \in LMod_R$, $Ext_R^i(M, N) := \pi_0 Map_{LMod_R}(M, N[i])$.

HA7.1.1.13: R connective E, -ring.

Then (LMod_R²⁰, LMod_R²⁰) accessible t-structure on LMod_R.

To determines an equivalence of the heart $LMod_R^{\circ}$ with the abelian category. A of left $\pi_0 R$ -modules. \longrightarrow right t-exact functor $\theta: \mathcal{D}(A) \longrightarrow LMod_R$.

HA7.1.1.15: If R is discrete, i.e. $\pi_i(R) = 0$ $\forall i = 0$, then 0 induces an equiv of $D^-(A)$ with the ∞ -cat of right bounded objects of $LMod_R$.

ms equiv of ∞-cats D(A) ~ LModR.

it can be promoted to an equiv of symmetric monoidal co-cats.

Recognition principles: when is a stable op-category of the form LMode or RMode?

Schwede-Shipley theorem: C stable ∞ -cat. Then C is equiv to RModR for some E_1 -ring R, if and only if C is presentable and A a compact object $C \in G$ which generates C in the following sense: if $D \in C$ is an object having the property that $Ext^n_C(C,D) = 0$ for $V \cap E \cap C$, then D = 0.

HA7.1.2.7: C symmetric Monoidal co-cat. Then C is equiv to Mode for some Expring R if and only if the following conditions are satisfied:

- (1) C is stable and presentable, ® preserve small colimits
- (2) The unit object 1 = C is compact.
- (3) The object 1 generates C as above.
- 3.2 Explicit models for algebras over discrete commutative rings:

Def: R comm ring. A differential graded algebra over R is a graded associative algebra A_* over R equipped with a differential $d: A_* \rightarrow A_{*-1}$ satisfying the following conditions: • $d^2=0$

· It is a (graded) derivation, i.e. we have the Leibniz rule $d(xy) = (dx)y + (-1)^{|x|} \times dy.$

Morphism $\phi: A_* \longrightarrow B_*$ is a homomorphism of graded R-algebra st. $\phi(dx) = d\phi(x)$.

Algo (R): Category of dg algebras over R.

A map $\phi: A_* \longrightarrow B_*$ of dy-algebras is a quasi-isomorphism if it induces a quasi-isom of chain complexes over R.

HA7.1.4.6: R comm ring. We have an equiv of exacts: $Alg^{dg}(R) \left[quaoi-isomorphisms^{-1} \right] \simeq Alg_{R} \left(:= Alg_{E_{i}}(LMod_{R}) \right)$

Def: A dy-algebra A_{x} over a comm ring R is a commutative differential graded algebra (cdga) if $\forall x \in A_{m}$, $y \in A_{n}$, we have $xy = (-1)^{mn}yx$.

CAlg dR(R) C Algdo(R) full subcat.

HA7.1.4.11. R comm ring of char D i.e. R > Q (otherwise we have trouble with model structures for edgas)

We have an equiv of so-cats:

 $CAlg^{dg}(R)[quasi-isom^{-1}] \simeq (Alg_R(:= CAlg(LMod_R(Sp))) \simeq (Alg_{R/})$

HA7.1.4.18: R comm ring, AlgR category of discrete associative R-algebras.

AlgR category of simplicial objects of AlgR. Then we have an equiv of 00-cats

AlgR [homotopy equiv of underlying simplicial sets] = AlgR.

HA7.1.4.20: R comm ring, CAlgust category of discrete commutative R-algebras. CAIgR cat of simplicial objects of CAIgR. We have a functor

CAIght [--- -- CAIght.

It is an equiv if R > Q.

3.3 Properties of rings and modules

3.3.1: Free resolutions and spectral sequences.

Def: C presentable so-cat, S a collection of objects of C,

A simplicial object X. of C is S-free if Vn, 3 a coproduct F of objects of S and a map F -> Xn in C which induous an equiv

 $L_n(x) \sqcup F \xrightarrow{\sim} X_n$

nth latching object,

consisting of all "degenerate simplies".

Let $C \in \mathcal{C}$, X, a simplicial object of $\mathcal{C}_{/C}$, X, is called an S-hypercovering of C if for every object $Y \in S$ corepresenting a functor $X: C \rightarrow S$, the simplicial object X(X) is a hypercovering in the ∞ -topos $S_{/X(C)}$.

Example: R associative ring, A category of left R-modules, $S = \{R\}$.

M. simplicial object $\frac{Dold-Kan}{}$ correspondence $\Rightarrow P_{\#}$ corresponding chain complex

Then M. is S-free \iff each Pn is a free left R-module.

M. is an S-hypercovering of a left R-module M

 \Leftrightarrow the associated chain complex $\cdots \to P_2 \to P_1 \to P_0 \to M \to 0$ is exact.

HA7.2.1.4-9: C presentable ∞ -cat, S a set of objects of C. Then for every object $C \in C$, there exists an S-free S-hypercovering X: $\Delta^{op} \rightarrow C_C$, unique up to simplicial homotopy.

Def: R E,-ring, N \in LModR. N is quasi-free if N \simeq \text{PR[na]} \acksimes

For $M \in RMod_R$, $N \in LMod_R$, we can study the homotopy groups of $M \otimes N$ by resolving N by quasi-free R-modules.

P. S-free S-hypercovering of N where $S := \{R[n], n \in \mathbb{Z}\}$.

~~> spectral sequence with E_z -page $E_z^{P,*} \simeq Tor_p^{\pi_R}(\pi_* M, \pi_* N)$

which converges to $\pi_{p+q}(M \otimes N)$.