II. Derived Rings 1. 00-Operads Our language to make sense of commutativity and associativity up to homotopy.

 $\forall 1 \leq i \leq n$, let $\rho^{i}: \langle n \rangle \longrightarrow \langle 1 \rangle$ sending $i \mapsto 1$, others $\mapsto *$. A mor $f: \langle m \rangle \longrightarrow \langle n \rangle$ in Fin_{*} is inert if $\forall i \in \langle n \rangle^{\circ} = \{1, \dots, n\}$, $f^{-1}\{i\}$ has exactly one element.

Def: An ∞ -operad is a functor $p: \mathcal{O}^{\otimes} \longrightarrow \operatorname{Fin}_{*}$ between ∞ -cats, st. (1) \forall inert mor $f: \langle m \rangle \longrightarrow \langle n \rangle$ in Fin_{*} \forall obj $C \in \mathcal{O}_{\langle m \rangle}^{\otimes}$, \exists a p-cocartesian mor $f: C \longrightarrow C'$ in \mathcal{O}^{\otimes} lifting f. Any such f is called inert. In particular, f induces a functor $f_{!}: \mathcal{O}_{\langle m \rangle}^{\otimes} \longrightarrow \mathcal{O}_{\langle n \rangle}^{\otimes}$ (2) let $C \in O_{(m)}^{\otimes}$, $C' \in O_{(n)}^{\otimes}$, $f: \langle m \rangle \rightarrow \langle n \rangle$ in Fin_{*}. Let $Map_{0}^{f}(C, C') \subset Map_{0}(C, C')$ be union of conn complying over fChoose p-cocartesian morphisms C'-> Ci' bying over the inert morphisms $p^i: \langle n \rangle \rightarrow \langle 1 \rangle$ for $l \leq i \leq n$. Then the induced map $\begin{aligned} & \operatorname{Map}_{G^{\otimes}}^{f}(C,C') \longrightarrow \operatorname{TT} \operatorname{Map}_{G^{\otimes}}^{p^{i}\circ f}(C,C'_{i}) \\ & i \leq i \leq n \end{aligned}$ is a homotopy equivalence. (3) $\forall n \ge 0$, the functors $\{P_i^i: O_{(n)}^{\otimes} \longrightarrow O\}_{i \le i \le n}$ determine an equiv of ω -cats $\phi: \mathcal{O}_{(n)} \longrightarrow \mathcal{O}^{n}$. $\mathcal{O}_{(1)}$ Notation: $\mathcal{O} := \mathcal{O}_{(1)}^{\otimes}$ is called the underlying on-category of \mathcal{O}^{\otimes} . Given X1, ..., Xn, YEO, let Mulo ({Xi}_{i \leq i \leq n}, Y) denote the union of Components of $Map_{0} \otimes (X, \oplus \dots \oplus Xn, Y)$ which lies over the unique $\begin{array}{ccc} & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$ Idea: We think of an co-operad as a category () together with "multi-morphisms" Muly ({xi}i=i=n, Y) whose compositions are associative up to homotopy. Example: The commutative co-operad $Comm^{\otimes} := Fin_{*}$

Def: 0°, 0'° w-operads. An w-operad map from 6° to 0° is a functor $f: 0^{\otimes} \rightarrow 0^{\prime \otimes}$ of ∞ -cats over $\operatorname{Fin}_{\mathscr{X}}$ which carries inert mor in 0^{\otimes} to inert mor in 0^{\otimes} . Let Algo (D') denote the full subcat of Fun (0°, 0'°) spanned Def: 0^{\otimes} so-operad. A cocartesian fibration $p: C^{\otimes} \rightarrow 0^{\otimes}$ is called a cocartesian fibration of ∞ -operads if the composition $C^{\infty} \rightarrow C^{\infty} \rightarrow Fin_{*}$ is an os-operad. In this case, C is called an O-monoidal os-category. Idea: $\forall f \in Mul_{\mathcal{O}}(\{X_i\}_{i \in i \leq n}, Y)$, the cocartesian fibration p determined a functor $\mathscr{D}_{f}: \prod \mathcal{C}_{X_{i}} \longrightarrow \mathcal{C}_{Y}$ $i \in i \leq n$ $\gamma_{fiber of C at X_{i}}$ Example: A symmetric monoidal co-cat C is a Fing-monoid co-cat, i.e. a cocartesian fibration $C^{\infty} \longrightarrow Fin_{\pi}$ s.t. $\forall n \ge 0$, the maps $\{p_i: \langle n \rangle \rightarrow \langle 1 \rangle\}_{i \leq n}$ induces functors $p_i^i: C_{\langle n \rangle} \rightarrow C_{\langle 1 \rangle}^{\otimes}$ which determine an equivalence $C_{(n)}^{\otimes} \simeq (C_{(1)}^{\otimes})^n$.

The morphisms $\alpha: \langle 0 \rangle \rightarrow \langle 1 \rangle$ and $\beta: \langle 2 \rangle \rightarrow \langle 1 \rangle$ in Finx determines $(Alg(\mathcal{C})) := Alg_{Fin_{x}}(\mathcal{C}) \quad \infty - category of commutative algebra objects of <math>\mathcal{C}$.

functors $\Delta^{\circ} \longrightarrow C$ $C \times C \longrightarrow C$ Corresponding to the unit object 1 e C and the tensor product. Def: C^O D^O 0-monoidal oo-categories f ∈ Alge/0 (D) is a O-monoidal functor if it carvies p-cocartesian mor to q-cocartesian mor. In the special case $\mathcal{O}^{\otimes} = \operatorname{Fin}_{*}$, we say symmetric monoidal functor. Def: C on-category. A symmetric monoidal structure on C is cartesian if • the unit obj le EC is final • $\forall C, D \in C$, the canonical maps $C \simeq C \otimes 1_C \leftarrow C \otimes D \rightarrow 1_C \otimes D_{2D}$ exhibit $C \otimes D$ as a product of C and D in the so-cat C. Dually ~> cocartesian symmetric monoidal structure. HA2.4.1: C ∞- cat admitting finite products. Then C admits a cartesian symmetric monoidal structure, unique up to equivalence. In this case, the ∞ -cat (Alg(C) admits a direct description in terms of monoids.

2. Algebras and modules

$$C^{\otimes}$$
 symmetric monoidal co-cat $\mathcal{O} := \operatorname{Finn}$
 $(\operatorname{Alg}(C) := \operatorname{Alg}_{\mathcal{O}}(C)$
Evaluate at $(1) \in \operatorname{Fin}_{\mathcal{K}} \longrightarrow \operatorname{Forgetful} \operatorname{functor} \mathcal{O}: (\operatorname{Alg}(C) \to C)$
HA3. 1.3.14: Assume that the underlying co-cat C admits countable colimits,
and \otimes preserves countable colimits. Then \mathcal{O} admits a left adjoint,
which is given informally by the formula
 $C \longmapsto \operatorname{Sym}^{\ast} C = \coprod C^{\otimes n} / \leq_{n}$
 $\mathcal{L}^{\circ} \operatorname{co-categorical} \operatorname{quotient} by$
the symmetric group"
HA3.2: \mathcal{O} If C is complete (i.e. has small limits), then so is (Alg(C)).
The forgetful functor \mathcal{O} detects (i.e. preserves and reflects) limits.
2) If C is cocomplete, and \otimes is compatible with colimits, then (Alg(C))
is cocomplete. The forgetful functor \mathcal{O} detects sifted colimits, but not
general colimits.
(A simplicial set K is sifted if it is nonempty, and the hiagonal map
 $K \to K \times K$ is cofinal.
Idua: sifted \supset filtered + quotient by equiv relations.

- 3) If C is presentable, and \otimes is compatible with colimits, then (Alg(C)) is presentable.
- 4) 3 a cocartesian symmetric monoidal structure on CAlg(C) st. the forgetful functor is monoidal. (Informally, the tensor product on C induces a tensor product on comm alg. objects)
- Def: Associative operad Assoc It is a colored operad having a single object or MulAssoc ({a}, a) is the V finite set I, the set of operations set of linear orderings on I. Composition of linear orderings ---- operal Assoc -> Fint called associative on operad C^{\otimes} so-operad equipped with a fibration $q: C^{\otimes} \longrightarrow Assoc^{\otimes}$ $Alg(\mathcal{C}) := Alg_{(Assoc}(\mathcal{C}) \otimes -operad sections of q, called the or-cat$ of associative algebra objects of C. A monoidal ∞ -cat is a cocartesian fibration of ∞ -operade C^{∞} -Assoc HA4.1.1.14: Let $p: C^{\otimes} \longrightarrow Fin_{*} \otimes -operad$. Then C^{\otimes} is a symmetric monoidal ∞ -cat if and only if the induced map p': Assoc[®] × $\mathcal{T}^{\otimes} \rightarrow Assoc^{\otimes}$ Fin.

is a monoidal ∞ -cat.

Def: Left module operad LM.
It is a colored operad having two elements a and m
Volgicis
$$\{X_i\}_{i \in I}$$
 and Y of LM
Mulum $(\{X_i\}_{i \in I}, Y) :=$
 $\begin{bmatrix} If Y = n, X_i = 0 & \forall i, then it is the collection of all linear ordering:
on I;
If Y = n, $X_i = 0 & \forall i, then it is the collection of all linear ordering:
on I;
If Y=m, and exactly one $X_i = m$, then it is the collection of
linear orderings on I st. the last $X_i = m$.
In all other cases, it is ϕ .
 $\longrightarrow 00$ -operad LM[®]
We have natural Assoc[®] $\longrightarrow LM^{@} \xrightarrow{fibration} Assoc
 $C^{@} \longrightarrow Assoc^{@} fibration of oo-operads$
 ∞ -category of left modules LMed(C) := Alg_{IM/Assoc}(C)$
For $A \in Alg(C)$, we define ∞ -cat of left A-modules
 $LMed_A(C) := LMed(C) \times \{A\}$.
 $Alg(C)$
HA42: C monoidal ∞ -cat, $A \in Alg(C)$, forgetful functor
 $\theta: LMed_A(C) \longrightarrow C$.$$

(1) O has a left adjoint, given by "free module".

(2) If C is complete, then so is $LMod_{A}(C)$, and D detects limits. (3) If C is cocomplete, and \otimes preserves colimits, then $LMod_{A}(C)$ is cocomplete, and D detects colimits.

(F) If C is presentable, and \otimes preserves colimits, then $LMod_A(C)$ is presentable.

(5) Assume C is symmetric monoidal, admits simplicial colimits, and \oslash preserves simplicial colimits. $A \in (Alg(C))$.

Then $Mod_{A}(C) := LMod_{A}(C)$ is a symmetric monoidal ∞ -cat, and the forgetful functor D is lax-monoidal (i.e. only a map of ∞ -operads)