Adjoint functors:

Def: Consider cartesian fibration M C D PL Δ' $0 \rightarrow 1$

Straightening
$$\longrightarrow$$
 functor $g: D \longrightarrow C$

Def: C, D ou-cats. An adjunction between C and D is a functor $q: M \longrightarrow \Delta'$ which is both a cartesian fibration and a cocartesian fibration together with equivalences $C \simeq M_0$ and $D \simeq M_1$. Let $f: C \rightarrow D$ and $g: D \rightarrow C$ be functors associated to M. We say that f is left adjoint to g, and g is right adjoint to f. HTT 5.2.2.8: $C \xrightarrow{f} D \infty$ -cats. TFAE: • f is left adjoint to g • ∃ a unit transformation u: ide → gof, i.e. VCEC, DED, the composition $Map(f(C), D) \longrightarrow Map(g(f(C)), g(D)) \xrightarrow{u(C)} Map(C, g(D))$ îs a homotopy equivalence. HTT5.2.3.5: $C \stackrel{T}{\underset{g}{\longrightarrow}} D$ adjunction. Then f preserves all colimits which exist in C g preserves all limits which exist in D.

Proposition: $f: C \rightarrow D \in \mathbb{Z}$ so-cats Composition with f gives a functor $f^*: Fun(D, E) \longrightarrow Fun(C, E)$. The left (right) adjoint to f^* is the left (right) Kan extension functor. These adjoints exist if and only if every functor $C \rightarrow E$ admits a Kan extension. Dec. A full where $F \in P$ is a localization of P if the induction

HTT 5, 5.4.15: C presentable ∞ -cat. Then (accessible) localizations of C \iff inverting collection of morphisms that are strongly saturated and of small generation.

 $\Omega X \rightarrow$

$$\begin{array}{c} \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 0 \longrightarrow \Sigma X & 0 \longrightarrow X \\ \begin{array}{c} \text{Suspension} & \text{loop} \\ \end{array} \\ \begin{array}{c} \text{HTT4.3.2.15} @ \exists \text{ snspension functor } & \Sigma: & C \longrightarrow C \\ & & \text{loop functor } & \Omega: & C \longrightarrow C \\ & & \text{They are mutually inverse equivalences.} \\ \end{array} \\ \begin{array}{c} \text{For } n \geqslant 0, & \chi[n] := n^{\text{th}} \text{ power of suspension} \\ n \leq 0, & \chi[n] := (-n)^{\text{th}} \text{ power of coop} \\ \end{array} \\ \begin{array}{c} \text{Rem: } C \text{ stable } \infty - \text{cat.}, & f: & X \rightarrow Y \text{ in } C. \text{ Form pullbacks} \\ & & \chi \stackrel{f}{\rightarrow} Y \longrightarrow O \\ & \downarrow \stackrel{g}{\rightarrow} \stackrel{f}{\rightarrow} \stackrel{f}{\rightarrow} \chi[1] \\ \end{array} \\ \begin{array}{c} \text{Thun the image of } & \chi \stackrel{f}{\rightarrow} Y \stackrel{g}{\rightarrow} Z \stackrel{h}{\rightarrow} \chi[1] \text{ in the homotopy cat } hC \\ \end{array} \\ \begin{array}{c} \text{is called a distinguished triangle. The collection of distinguished triangles} \\ \end{array} \\ \begin{array}{c} \text{endow } hC \text{ with the classical structure of a triangulated cat.} \\ \end{array} \\ \begin{array}{c} \text{HA1.1.3.4: A stable co-cat admits all finite limits and collimits, and} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{Equivalent definitions of stable co-cats:} \\ \end{array} \\ \begin{array}{c} \text{HA1.4.2.27: let C be a pointed co-cat (i.c. has a 0-obj). TFAE: \\ \end{array} \\ \end{array}$$

(2) C admits finite columits, and the suspension functor $\Sigma: C \rightarrow C$ is

an equiv. (3) C admits finite limits, and the loop functor Ω : $C \rightarrow C$ is an equiv. HAI.I.4.1: A functor F: C -> D between stable on-cats is called exact if and only if the following equiv cond hold: (1) F preserves fiber seguences (2) F is left exact, i.e. commutes with finite limits (3) F is right exact, i.e. commutes with finite colimits. HA1.1.4.4, 1.1.4.6: Let Catos be the subcat spanned by stable co-cats and exact functors. Then Cato admits small limits and small filtered colimits, and they are preserved by the inclusion. Def: A t-structure on a stable co-cat C is a pair of full subcats $C_{\gg0}$, $C_{\leq0}$ s.t. (1) $\forall X \in \mathcal{C}_{\geq 0}$, $Y \in \mathcal{C}_{\leq 0}$, $\pi_0 \operatorname{Map}(X, Y(-1)) = 0$ (2) $C_{\geq 1} \subset C_{\geq 0}$, $C_{\leq -1} \subset C_{\leq 0}$, where $C_{\geq n} := C_{\geq 0}[n]$ $C_{\leq n} := C_{\leq 0}[n]$ (3) $\forall X \in C, \exists fiber seq X' \longrightarrow X \longrightarrow X'' where X' \in C_{\geq 0}, X'' \in C_{\leq -1}$ HAI.2.1.S: VNEZ, CENCC is a localization ma left adjoint TEN truncation Dually, C>n C has a right adjoint T>n. Det: The heart C^D := full subcat C>0 A C <0 C C

$$\begin{aligned}
\pi_{o} := \tau_{\leq o} \circ \tau_{\geq o} \simeq \tau_{\geq o} \circ \tau_{\leq o} : \mathcal{C} \longrightarrow \mathcal{C}^{\heartsuit} \\
\forall n \in \mathbb{Z}, \quad \pi_{n} := \pi_{o} \circ [-n]. \\
Rem: For X, Y \in \mathbb{C}^{\heartsuit}, \quad \pi_{n} \operatorname{Map}(X, Y) \simeq \operatorname{Map}(X, Y[-n]) = 0 \text{ for } n > 0. \\
So \mathbb{C}^{\heartsuit} is a 1-category, it is in fact an abelian category. \\
Example: A Grothundiech abelian cat \\
Ch(A): the cat of chain complexes \\
D(A) := Ch(A) [qis⁻¹], inverting all quasi-isomorphisms, called the derived co-category. \\
HA135: D(A) is a presentable stable co-category. \\
It has a i-structure $(D(A)_{\geq o}, D(A)_{\leq o})$
 $\Gamma_{spanned}$ by chain complexes M with $H_{i}(M)^{-C}$ for $i < 0$.
Notation: Right bounded derived co-cat $D^{-}(A) \subset D(A)$ spanned by chain complexes M with $H_{i}(M)^{-C}$
 $Loft$ bounded derived co-cat $D^{-}(A) \subset D(A)$ spanned by chain complexes M with $H_{i}(M)^{-C}$
 $I_{optimum}$ M with $H_{i}(M) = 0$ for $i < 0$.
 $Loft$ bounded $\cdots D^{+}(A) \cdots D^{+}(A) \cdots$$$

I dea: formally invert the loop functor Def: C ∞ -cat admitting finite limits. Let $C_* := C_*$ the ∞ -cat of pointed objects of C. The co-cat of spectrum objects of C: $S_p(\mathcal{C}) := \lim_{K \to \infty} (\dots \to \mathcal{C}_{\mathbf{x}} \xrightarrow{S_2} \mathcal{C}_{\mathbf{x}})$ Def: 00 - cat of finite spaces 5^{fin} c S full subcat generated by * under finite colimits. C so-cat admitting finite limits. Equivalently, a spectrum object of C is a reduced, excisive functor X(*) = * takes pushout to pullbacks $X: S_{*}^{fin} \rightarrow C$ $Sp(C) = Exc_{*}(S_{*}^{fin}, C) \subset Fun(S_{*}^{fin}, C)$ full subcat spanned by spectrum objects. HA 1.4.2.17: Sp(C) is a stable concat. Notation: Ω^{∞} : $Sp(\mathcal{C}) \rightarrow \mathcal{C}$ evaluation at the 0-sphere S° . $\forall n \in \mathbb{Z}, \Omega^{\infty-n} := \Omega^{\infty} \circ [n].$ Adjoint functor theorem $\Rightarrow \Omega^{\infty}$ has left adjoint $\Sigma_{+}^{\infty}: C \rightarrow S_{p}(C)$ Next we specialize to the case C = S. Def: A spectrum is a spectrum object of the so-cat of spaces S. The co-cat of spectra $Sp := Sp(S_*)$

Sphere spectrum $S := \mathcal{Z}_{+}^{\infty}(*) \in S_{p}$

More concretely, a spectrum is a sequence of pointed spaces $\{X_n\}_{\geq 0}$ equipped with homotopy equivalences $X_n \xrightarrow{\sim} \mathcal{N} X_{n+1}$.

HA1.4.3.6: The full subcat $(Sp)_{\leq -1} \subset Sp$ spanned by objects X s.t. $\Omega^{\infty}(X) \in S$ is contractible. \longrightarrow t-structure on Sp, whose heart $Sp^{\heartsuit} \cong Ab$, the cat of abelian group.