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Introduction

Ricci flow equation:
d

2 (1) = —2Ric(g(2)) (0.1)

Theorem (Hamilton)

Let M be a compact n-dimensional manifold, there exists a short time
Ricci flow starting from M.

v

Compact RF preserves Ric > 0 in 3d. Curvature blows up in finite time.

Producing Ricci flows by singular Ricci flows




Introduction

Ricci flow equation:
d :
= g(t) = ~2Ric(g(t)) (0.1)

v

Theorem (Hamilton)

Let M be a compact n-dimensional manifold, there exists a short time
Ricci flow starting from M.

Compact RF preserves Ric > 0 in 3d. Curvature blows up in finite time.

Theorem (Shi)

Let M be a complete n-dimensional manifold with bounded curvature,
there exists a short time complete Ricci flow starting from M.

Shi's RF preserves Ric > 0 in 3d.
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Introduction

Theorem (Simon, Topping, 2017)

Let (M, g) be a 3d complete manifold. Suppose Vol,(Bg(x,1)) > v
(non-collapsing) and Ric > —1 everywhere (curvature lower bound). Then
there exists a Ricci flow (M, g(t)), t € [0, T] with g(0) = g.
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Introduction

Theorem (Simon, Topping, 2017)

Let (M, g) be a 3d complete manifold. Suppose Vol,(Bg(x,1)) > v
(non-collapsing) and Ric > —1 everywhere (curvature lower bound). Then
there exists a Ricci flow (M, g(t)), t € [0, T] with g(0) = g.

Idea: Take an exhaustion of M by compact subsets U;. For each U;,
construct a local Ricci flow (U, gi(t)), t € [0, T], by running Shi's Ricci
flow inductively. Take a limit of (U, gi(t)) to get a Ricci flow (M, g(t)).
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Introduction

Theorem (Simon, Topping, 2017)

Let (M, g) be a 3d complete manifold. Suppose Vol,(Bg(x,1)) > v
(non-collapsing) and Ric > —1 everywhere (curvature lower bound). Then
there exists a Ricci flow (M, g(t)), t € [0, T] with g(0) = g.

Idea: Take an exhaustion of M by compact subsets U;. For each U;,
construct a local Ricci flow (U, gi(t)), t € [0, T], by running Shi's Ricci
flow inductively. Take a limit of (U, gi(t)) to get a Ricci flow (M, g(t)).

Two key curvature estimates:
o [Rm|g ) < % Suppose this is not true, there is a sequence of Ricci

flows converging to a k-solution. The non-collapsing assumption
implies the asymptotic volume ratio is non-zero, contradiction.

@ Ric > —C, obtained by a bootstrap argument.
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Introduction

Some invariant curvature conditions:

(1) non-negative curvature operator;

(2) non-negative complex sectional curvature (weakly PIG,);
(3) 2-non-negative curvature operator (Ric > 0 in 3d);

(4) weakly PICy;
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Introduction

Some invariant curvature conditions:

1) non-negative curvature operator;

(
(2) non-negative complex sectional curvature (weakly PIG,);
(3) 2-non-negative curvature operator (Ric > 0 in 3d);

(4) weakly PICy;

(

1)(2) = sec > 0= (3)(4) = Ric>0

Yi Lai
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Introduction

Bamler,Cabezas-Rivas,Wilking, 2017

Let (M, g) be an n dimensional complete manifold. Suppose
Volg(Bg(x,1)) > vo (non-collapsing) and one of the following curvature is
bounded below by —1 (curvature lower bound). Then there exists a Ricci

flow (M, g(t)), t € [0, T] with g(0) = g:
(1) non-negative curvature operator;
(2) non-negative complex sectional curvature (weakly PIG,);
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Introduction

Bamler,Cabezas-Rivas,Wilking, 2017

Let (M, g) be an n dimensional complete manifold. Suppose
Volg(Bg(x,1)) > vo (non-collapsing) and one of the following curvature is
bounded below by —1 (curvature lower bound). Then there exists a Ricci
flow (M, g(t)), t € [0, T] with g(0) = g:

(1) non-negative curvature operator;

(2) non-negative complex sectional curvature (weakly PIG,);

Idea: Take a limit of (U;, gi(t)).

Two key curvature estimates:

o [Rmlg < .
@ (1) (or (2)) > —C, obtained by a heat kernel method.
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Introduction

Combining these two works, we can generalize both of them to

L, 2018

Let (M, g) be an n dimensional complete manifold. Suppose
Volg(Bg(x,1)) > vo (non-collapsing) and one of the following curvature is
bounded below by —1 (curvature lower bound). Then there exists a Ricci

flow (M, g(t)), t € [0, T] with g(0) = g:
(3) 2-non-negative curvature operator (< Ric > 0 in 3d);
(4) weakly PICy;
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Introduction

Combining these two works, we can generalize both of them to

L, 2018

Let (M, g) be an n dimensional complete manifold. Suppose
Volg(Bg(x,1)) > vo (non-collapsing) and one of the following curvature is
bounded below by —1 (curvature lower bound). Then there exists a Ricci

flow (M, g(t)), t € [0, T] with g(0) = g:
(3) 2-non-negative curvature operator (< Ric > 0 in 3d);
(4) weakly PICy;

Remark: The non-collapsing assumption cannot be removed, if we only
assume a negative lower bound on curvature:
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Introduction

Combining these two works, we can generalize both of them to

L, 2018

Let (M, g) be an n dimensional complete manifold. Suppose
Volg(Bg(x,1)) > vo (non-collapsing) and one of the following curvature is
bounded below by —1 (curvature lower bound). Then there exists a Ricci

flow (M, g(t)), t € [0, T] with g(0) = g:
(3) 2-non-negative curvature operator (< Ric > 0 in 3d);
(4) weakly PICy;

Remark: The non-collapsing assumption cannot be removed, if we only
assume a negative lower bound on curvature:
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Introduction

However, the non-collapsing assumption can be removed when assuming
non-negative lower bound on certain curvatures:

Cabezas-Rivas,Wilking, 2011

In arbitrary dimension, there exists a complete Ricci flow starting from a
complete manifold with non-negative complex sectional curvature.
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Introduction

However, the non-collapsing assumption can be removed when assuming
non-negative lower bound on certain curvatures:

Cabezas-Rivas,Wilking, 2011

In arbitrary dimension, there exists a complete Ricci flow starting from a
complete manifold with non-negative complex sectional curvature.

Idea: take (M, p;) — (M, p), where M; is compact and has non-negative
complex sectional curvature. So the same holds for (M, gi(t)), t € [0, T}],
and lim; »1; Vol;(M;) = 0. By Petrunin’s result, th(p;,l) Rdvol < C, it
implies T; > T for all i. Then take a convergent subsequence of

(M, gi(t)), t € [0, T].
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Introduction

However, the non-collapsing assumption can be removed when assuming
non-negative lower bound on certain curvatures:

Cabezas-Rivas,Wilking, 2011

In arbitrary dimension, there exists a complete Ricci flow starting from a
complete manifold with non-negative complex sectional curvature.

Idea: take (M, p;) — (M, p), where M; is compact and has non-negative
complex sectional curvature. So the same holds for (M;, gi(t)), t € [0, Tj],
and lim; »1; Vol;(M;) = 0. By Petrunin’s result, th(p;,l) Rdvol < C, it
implies T; > T for all i. Then take a convergent subsequence of

(M;, gi(t)), t € [0, T].

Note, in 3d, complex sec > 0 < sec > 0 = Ric > 0.

Question: is Ric > 0 in 3d sufficient to run a Ricci flow?
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Introduction

A conjecture by Topping

Given a 3d complete Riemannian manifold (M, g) with Ric > 0, there is a
smooth continuation by Ricci flow.

Main theorem (L, 2020)

Given a 3d complete Riemannian manifold (M, g) with Ric > 0, there is a
smooth Ricci flow (M, g(t)), t € [0, Tmax), starting out from (M, g).
Moreover, if T,hax < 00, then the curvature blows up everywhere when t
goes up to Tmax.
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Introduction

A conjecture by Topping

Given a 3d complete Riemannian manifold (M, g) with Ric > 0, there is a
smooth continuation by Ricci flow.

Main theorem (L, 2020)

Given a 3d complete Riemannian manifold (M, g) with Ric > 0, there is a
smooth Ricci flow (M, g(t)), t € [0, Tmax), starting out from (M, g).
Moreover, if T,hax < 00, then the curvature blows up everywhere when t
goes up to Tmax.

v

e.g. Tmax < 0o: the standard solution, S2 X R; Tax = 00: Bryant soliton
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Introduction

A conjecture by Topping

Given a 3d complete Riemannian manifold (M, g) with Ric > 0, there is a
smooth continuation by Ricci flow.

Main theorem (L, 2020)

Given a 3d complete Riemannian manifold (M, g) with Ric > 0, there is a
smooth Ricci flow (M, g(t)), t € [0, Tmax), starting out from (M, g).
Moreover, if T,hax < 00, then the curvature blows up everywhere when t
goes up to Tmax.

v

e.g. Tmax < 0o: the standard solution, S2 X R; Tax = 00: Bryant soliton
Strategy to construct the flow:

@ run a generalized singular Ricci flow M;
@ show Ric > 0 holds on M;
@ show that M is actually smooth.
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Singular Ricci flow

A Ricci flow spacetime (M, g(t)) is the following:

@ M is a 4-manifold with boundary.
e time function t: M — [0, T), time-t-slice M, and Mg = oM.
@ O; is a smooth vector field in M, 9;t = 1.

@ g is a metric on ker(dt).
o Ly.g = —2Ric(g(t)).
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Singular Ricci flow

A Ricci flow spacetime (M, g(t)) is the following:

@ M is a 4-manifold with boundary.

@ time function t: M — [0, T), time-t-slice M, and My = OM.
@ O; is a smooth vector field in M, 9;t = 1.

@ g is a metric on ker(dt).

o Ly.g = —2Ric(g(t)).

Canonical neighborhood assumption (CNA): Let M be a 3d manifold. We
say that the e-CNA holds at x € M, if (M, x) is e-close to a k-solution at
scale R(x)~1/2.
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Singular Ricci flow

e-neck: A region that is e-close to S2 x R under rescaling.

strong e-neck: A spacetime region that is e-close to (S x R, g(t)) for
t € [-1,0] under rescaling.
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Singular Ricci flow

e-neck: A region that is e-close to S2 x R under rescaling.

strong e-neck: A spacetime region that is e-close to (S x R, g(t)) for
t € [-1,0] under rescaling.

gradient estimates: If e-CNA holds at x, then

IVR™Y?|(x) < C, |8:R7|(x) < C. (0.2)
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Singular Ricci flow

e-neck: A region that is e-close to S2 x R under rescaling.

strong e-neck: A spacetime region that is e-close to (S x R, g(t)) for
t € [-1,0] under rescaling.

gradient estimates: If e-CNA holds at x, then

IVR™Y?|(x) < C, |8:R7|(x) < C. (0.2)

We say a Ricci flow spacetime M is 0-complete (resp. backward
0-complete) if for any smooth curve « : [0, s9) — M that satisfies
inflo,5) R(7(s)) < oo and one of the following, then lims_,5, v(s) exists:

@ ([0, sp)) is contained in a time-slice M, and has finite length with
respect to the horizontal metric in M, or

@ ~ is the integral curve of —0;, or 9 (resp. only —d;).
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Singular Ricci flow

Theorem (Kleiner,Lott, 2014)

Let (M, g) be a 3d compact manifold, then there exists a singular Ricci
flow starting from M, which is a Ricci flow spacetime that satisfies

e My = M is compact;

o M is 0-complete;

e Forany x € M, t(x) < T, if R(x) > r=2(T), then the e-CNA holds
at x.

Yi Lai
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Singular Ricci flow

Theorem (Kleiner,Lott, 2014)

Let (M, g) be a 3d compact manifold, then there exists a singular Ricci
flow starting from M, which is a Ricci flow spacetime that satisfies

e My = M is compact;

o M is 0-complete;

e Forany x € M, t(x) < T, if R(x) > r=2(T), then the e-CNA holds
at x.

Theorem: For any xp € M, suppose xg survives until t5 > 0, then

N:= J U Bilx(t),A) (0.3)

t=[0,t0] A>0

is backward 0-complete.

Yi Lai
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Singular Ricci flow

Let (M, g(t)) be a singular Ricci flow with normalized initial condition,
X0 € M, t(x0) = tp. Suppose [Rm| < ro_2 in Py := P(xo, to, fo, —13), then
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Singular Ricci flow

Let (M, g(t)) be a singular Ricci flow with normalized initial condition,
X0 € M, t(x0) = tp. Suppose [Rm| < ro_2 in Py := P(xo, to, fo, —13), then

Theorem (Heat kernel)

Then there is a solution u > 0 to (—9: — A + R)u =0, u is a d-function
at xp, and Cp, = Cy(rp), such that

uRm S Cm in Mt<t0 — 7)0 (04)
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Singular Ricci flow

Let (M, g(t)) be a singular Ricci flow with normalized initial condition,
X0 € M, t(x0) = tp. Suppose [Rm| < ro_2 in Py := P(xo, to, fo, —13), then

Theorem (Heat kernel)

Then there is a solution u > 0 to (—9: — A + R)u =0, u is a d-function
at xp, and Cp, = Cy(rp), such that

uR™ S Cm in Mt<t0 - 7)0 (04)

Step 1 (construct u): Let M; — M be a sequence of Ricci flow with
surgeries. Define u; on M; by integrating with the ordinary heat kernels.
Then u; — u.
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Singular Ricci flow

Step 2 (a vanishing theorem): Studying the solution u > 0 to
(—=0¢ — A+ R)u =0 in a non-compact k-solution on [0, Tpmax).

For example, in a Bryant soliton: If uR™ < C, then u = 0.
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Singular Ricci flow

Step 2 (a vanishing theorem): Studying the solution u > 0 to
(—=0¢ — A+ R)u =0 in a non-compact k-solution on [0, Tpmax).

For example, in a Bryant soliton: If uR™ < C, then u = 0.
Step 3 (a semi-local maximum principle): For any x; with sufficiently large
R, there is xp with t(x2) > t(x1) such that

{URm(Xz) > (L +€m)uR™(x1),

u(x2) > (1 + em)u(xa). (0.5)
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Singular Ricci flow

Step 2 (a vanishing theorem): Studying the solution u > 0 to
(—=0¢ — A+ R)u =0 in a non-compact k-solution on [0, Tpmax).

For example, in a Bryant soliton: If uR™ < C, then u = 0.
Step 3 (a semi-local maximum principle): For any x; with sufficiently large
R, there is xp with t(x2) > t(x1) such that

{URm(Xz) > (L +€m)uR™(x1),

u(x2) > (1 + em)u(xa). (0.5)

Prove (0.5) by a limiting argument: Suppose it is violated in a sequence
(M, xi, ui), with R(x;) — co. Then rescale each flow by R(x;), and
rescale u; such that u;(x;) = 1. Then

(M, xi, ui) = (8oo(t)y Xoos Uoo)s (0.6)

where g (t) is a non-compact k-solution defined on [0, Tihax). By step 2
we get a contradiction. Prove the theorem by using (0.5) repeatedly.
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Singular Ricci flow

Corollary: [, udrvol =1 for all t € [0, to).
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Singular Ricci flow

Corollary: [, udrvol =1 for all t € [0, to).

Corollary: Pseudolocality theorem for singular Ricci flows.
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Singular Ricci flow

Corollary: [, udrvol =1 for all t € [0, to).

Corollary: Pseudolocality theorem for singular Ricci flows.

Canonical neighborhood theorem

Let (M, g, xo) be a singular Ricci flow, xo € My. Suppose |[Rm| <1 and
vol(Bi(x0,1)) > A~! on P(x0,0;1,1). Then there exists r(A) > 0 such
that the e-CNA holds in B;(xp, A) at scales less than r(A).
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Singular Ricci flow

Corollary: [, udrvol =1 for all t € [0, to).

Corollary: Pseudolocality theorem for singular Ricci flows.

Canonical neighborhood theorem

Let (M, g, xo) be a singular Ricci flow, xo € My. Suppose |[Rm| <1 and
vol(Bi(x0,1)) > A~! on P(x0,0;1,1). Then there exists r(A) > 0 such
that the e-CNA holds in B;(xp, A) at scales less than r(A).

Remark: Unlike the case of Ricci flow with surgeries, there is no need to
assume that the initial condition of M is normalized, thanks to the
'zero-surgery scale’ of the singular Ricci flow.
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Generalized singular Ricci flow

Theorem (L, 2020)

Let (M, g) be a 3d complete manifold (with possibly unbounded
curvature). Then there exists a generalized singular Ricci flow M
starting from (M, g), which is a Ricci flow spacetime that satisfies:
e My = M is complete;
o M is 0-complete;

@ For any fixed xo € M, t(xp) = to, e-CNA holds on By, (xo, A) at scales
(0, r(A)).

v
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Generalized singular Ricci flow

Proof of the Theorem:

Pick xp € M, and a sequence of compact manifolds
(M,’,Xo,') — (M,Xo). (07)

Let M; be singular Ricci flows with M; o = M;.
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Generalized singular Ricci flow

Proof of the Theorem:
Pick xp € M, and a sequence of compact manifolds
(M,’,Xo,') — (M,Xo). (07)

Let M; be singular Ricci flows with M; o = M;.
By the pseudolocality theorem,
x € Bi(x0i, A), t € [0,t(A)] = |Rm|(x) < C(A).
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Generalized singular Ricci flow

Proof of the Theorem:

Pick xp € M, and a sequence of compact manifolds
(M,’,Xo,') — (M,Xo). (07)

Let M; be singular Ricci flows with M; o = M;.

By the pseudolocality theorem,

x € Bi(x0i, A), t € [0,t(A)] = |Rm|(x) < C(A).

Take T = t(10). By the canonical neighborhood theorem,

x € Bi(xpi, A), t € [t(A), T] = e-CNA holds if |[Rm| > r(A)2.

Yi Lai Producing Ricci flows by singular Ricci flows



Generalized singular Ricci flow

Proof of the Theorem:

Pick xp € M, and a sequence of compact manifolds
(M,’,Xo,') — (M,Xo). (07)

Let M; be singular Ricci flows with M; o = M;.

By the pseudolocality theorem,

x € Bi(x0i, A), t € [0,t(A)] = |Rm|(x) < C(A).

Take T = t(10). By the canonical neighborhood theorem,

x € Bi(xpi, A), t € [t(A), T] = e-CNA holds if |[Rm| > r(A)2.
In summary, by decreasing r(A), we have

x € Bi(x0i, A), t € [0, T] = e-CNA holds if |[Rm| > r(A)=2.
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Generalized singular Ricci flow

Proof of the Theorem:

Pick xp € M, and a sequence of compact manifolds
(M,’,Xo,') — (M,Xo). (07)

Let M; be singular Ricci flows with M; o = M;.

By the pseudolocality theorem,

x € Bi(x0i, A), t € [0,t(A)] = |Rm|(x) < C(A).

Take T = t(10). By the canonical neighborhood theorem,

x € Bi(xpi, A), t € [t(A), T] = e-CNA holds if |[Rm| > r(A)2.

In summary, by decreasing r(A), we have

x € Bi(x0i, A), t € [0, T] = e-CNA holds if |[Rm| > r(A)=2.
Therefore, for any fixed A, B:(xp;, A) is uniformly totally bounded.
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Generalized singular Ricci flow

Let G; = dt? + g;(t), and d; be the metric induced by G;.
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Generalized singular Ricci flow

Let G; = dt? + g;(t), and d; be the metric induced by G;.

Let Pi(A) := Usepo, 7y Bt(xoi» A). Then (Pi(A), d;) is uniformly totally
bounded. So c
(Pi(A). di) 5 (X(A). da). (08)
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Generalized singular Ricci flow

Let G; = dt? + g;(t), and d; be the metric induced by G;.
Let Pi(A) := Usepo, 7y Bt(xoi» A). Then (Pi(A), d;) is uniformly totally
bounded. So c

(Pi(A), di) <= (X(A), da). (0.8)
Let N; = Uaso Pi(A), then

(N3, di xor) 222 (X, d, x0). (0.9)
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Generalized singular Ricci flow

Let G; = dt? + g;(t), and d; be the metric induced by G;.
Let Pi(A) := Usepo, 7y Bt(xoi» A). Then (Pi(A), d;) is uniformly totally
bounded. So c

(Pi(A), di) <= (X(A), da). (0.8)
Let N; = Uaso Pi(A), then

(NG, dixoi) 225 (X, d, o). (0.9)

Let M = {'smooth points’ in X}. By the gradient estimate, there is a
smooth spacetime metric on M, (M) = [0, T), and

(N5, &i(2), x0i) 2225 (M, x0). (0.10)
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Generalized singular Ricci flow

By taking T maximal, we can
assume that xg survives until
its curvature blows up.
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Generalized singular Ricci flow

By taking T maximal, we can
assume that xg survives until
its curvature blows up.

Moreover, we can show that
(M, xp) is backward
0-complete. By taking a
'union’ of all such (M, xp) we
get a generalized singular
Ricci flow.
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Generalized singular Ricci flow

By taking T maximal, we can
assume that xg survives until
its curvature blows up.

Moreover, we can show that
(M, xp) is backward
0-complete. By taking a
'union’ of all such (M, xp) we
get a generalized singular
Ricci flow.
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Generalized singular Ricci flow

By taking T maximal, we can
assume that xg survives until
its curvature blows up.

Moreover, we can show that
(M, x0) is backward
0-complete. By taking a
'union’ of all such (M, xp) we
get a generalized singular
Ricci flow.
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Part IV Proof of the main theorem
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Proof of the main theorem

Let (M, g) be a complete 3-manifold with Ric > 0 (resp. R > 0). Let M
be a generalized singular Ricci flow starting from (M, g). Then Ric >0
(resp. R >0) on M.
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Proof of the main theorem

Let (M, g) be a complete 3-manifold with Ric > 0 (resp. R > 0). Let M
be a generalized singular Ricci flow starting from (M, g). Then Ric >0
(resp. R >0) on M.

To show R > 0 is preserved, note

@ In each M;, R is positive in the high curvature regions. So Ry, < 0
is achieved at some point.

® Usep, 1) Uaso Be(xo(t), A) is backward 0-complete. It guarantees

liminf Rmin(t) > Rmin(tO)- (0]_1)

t\to

Then apply maximum principle.
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Proof of the main theorem

Let (M, g) be a complete 3-manifold with Ric > 0 (resp. R > 0). Let M
be a generalized singular Ricci flow starting from (M, g). Then Ric >0
(resp. R >0) on M.

To show R > 0 is preserved, note

@ In each M;, R is positive in the high curvature regions. So Ry, < 0
is achieved at some point.

® Usep, 1) Uaso Be(xo(t), A) is backward 0-complete. It guarantees

liminf Rmin(t) > Rmin(tO)- (0]_1)
to

LN

Then apply maximum principle.

We can show Ric > 0 in a similar way.
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Proof of the main theorem

Main theorem (L, 2020)

Given a 3d complete Riemannian manifold (M, g) with Ric > 0, there is a

smooth Ricci flow (M, g(t)), t € [0, Tmax), starting out from (M, g).
Moreover, if T,hax < 00, then the curvature blows up everywhere when t

goes up to T.
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Proof of the main theorem

Main theorem (L, 2020)

Given a 3d complete Riemannian manifold (M, g) with Ric > 0, there is a
smooth Ricci flow (M, g(t)), t € [0, Tmax), starting out from (M, g).
Moreover, if T,hax < 00, then the curvature blows up everywhere when t
goes up to T.

Proof: Let (M, g(t)) be a generalized singular Ricci flow starting from M.
Let xop € M. Suppose xg survives until T > 0. We claim that M; is
complete for all t € [0, T].
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Proof of the main theorem

Main theorem (L, 2020)

Given a 3d complete Riemannian manifold (M, g) with Ric > 0, there is a
smooth Ricci flow (M, g(t)), t € [0, Tmax), starting out from (M, g).
Moreover, if T,hax < 00, then the curvature blows up everywhere when t
goes up to T.

Proof: Let (M, g(t)) be a generalized singular Ricci flow starting from M.
Let xop € M. Suppose xg survives until T > 0. We claim that M; is
complete for all t € [0, T].

Suppose not, then for some t, A > 0 there is a minimizing geodesic
~v:10,1) — Bi(xo, A) such that lims_1 R(7(s)) = oo, and v(s) is center of
strong e-necks for all s close to 1.
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Proof of the main theorem

Let X = {p} U B:(x0, A) be the one-point completion, and take a blow-up
limit of X at p,

AX s X, as A — oo (0.12)
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Let X = {p} U B:(x0, A) be the one-point completion, and take a blow-up
limit of X at p,

AX s X, as A — oo (0.12)

Then by Ric > 0, we can show X, is a smooth cone.
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Let X = {p} U B:(x0, A) be the one-point completion, and take a blow-up
limit of X at p,
AX s X, as A — oo (0.12)

Then by Ric > 0, we can show X, is a smooth cone.

Since for any x € X, x is the center of a strong 2e-neck, X, is flat.
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Proof of the main theorem

Let X = {p} U B:(x0, A) be the one-point completion, and take a blow-up
limit of X at p,

AX s X, as A — oo (0.12)
Then by Ric > 0, we can show X, is a smooth cone.
Since for any x € X, x is the center of a strong 2e-neck, X, is flat.
However, by the gradient estimate on X,

IVR™2| < C = R™2(x) < Cd(x, p). (0.13)

So X is not flat, a contradiction. So M, is complete for all t € [0, T].
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Proof of the main theorem

Let X = {p} U B:(x0, A) be the one-point completion, and take a blow-up
limit of X at p,

AX s X, as A — oo (0.12)
Then by Ric > 0, we can show X, is a smooth cone.

Since for any x € X, x is the center of a strong 2e-neck, X, is flat.

However, by the gradient estimate on X,
IVR™2| < C = R™2(x) < Cd(x, p). (0.13)

So X is not flat, a contradiction. So M, is complete for all t € [0, T].

Since Ric > 0, we have d¢(x, x9) < do(x, xo) for any x € M. So M
survives until T, and M x [0, T] C M is a smooth Ricci flow.
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Thanks for your listening!

Yi Lai Producing Ricci flows by singular Ricci flows



