Producing Ricci flows by singular Ricci flows

Yi Lai

UC Berkeley

June 11, 2020

イロト イポト イヨト イヨト

臣

Structure of Talk:

- Part I Introduction
- Part II Singular Ricci flow
- Part III Generalized singular Ricci flow
- Part IV Proof of the main theorem

Part I Introduction

ヨト イヨト

æ

Ricci flow equation:

$$\frac{d}{dt}g(t) = -2\operatorname{Ric}(g(t)) \tag{0.1}$$

Theorem (Hamilton)

Let M be a compact n-dimensional manifold, there exists a short time Ricci flow starting from M.

Compact RF preserves Ric ≥ 0 in 3d. Curvature blows up in finite time.

Theorem (Shi)

Let M be a complete n-dimensional manifold with bounded curvature, there exists a short time complete Ricci flow starting from M.

Shi's RF preserves Ric \geq 0 in 3d.

イロン 不同 とくほど 不同 とう

Ricci flow equation:

$$\frac{d}{dt}g(t) = -2\operatorname{Ric}(g(t)) \tag{0.1}$$

Theorem (Hamilton)

Let M be a compact n-dimensional manifold, there exists a short time Ricci flow starting from M.

Compact RF preserves Ric ≥ 0 in 3d. Curvature blows up in finite time.

Theorem (Shi)

Let M be a complete n-dimensional manifold with bounded curvature, there exists a short time complete Ricci flow starting from M.

Shi's RF preserves Ric \geq 0 in 3d.

イロン 不同 とくほど 不同 とう

Theorem (Simon, Topping, 2017)

Let (M, g) be a 3d complete manifold. Suppose $Vol_g(B_g(x, 1)) \ge v_0$ (non-collapsing) and Ric ≥ -1 everywhere (curvature lower bound). Then there exists a Ricci flow $(M, g(t)), t \in [0, T]$ with g(0) = g.

Idea: Take an exhaustion of M by compact subsets U_i . For each U_i , construct a local Ricci flow $(U_i, g_i(t)), t \in [0, T]$, by running Shi's Ricci flow inductively. Take a limit of $(U_i, g_i(t))$ to get a Ricci flow (M, g(t)).

Two key curvature estimates:

- $|\operatorname{Rm}|_{g_i(t)} \leq \frac{C}{t}$. Suppose this is not true, there is a sequence of Ricci flows converging to a κ -solution. The non-collapsing assumption implies the asymptotic volume ratio is non-zero, contradiction.
- Ric $\geq -C$, obtained by a bootstrap argument.

Theorem (Simon, Topping, 2017)

Let (M, g) be a 3d complete manifold. Suppose $Vol_g(B_g(x, 1)) \ge v_0$ (non-collapsing) and Ric ≥ -1 everywhere (curvature lower bound). Then there exists a Ricci flow $(M, g(t)), t \in [0, T]$ with g(0) = g.

Idea: Take an exhaustion of M by compact subsets U_i . For each U_i , construct a local Ricci flow $(U_i, g_i(t)), t \in [0, T]$, by running Shi's Ricci flow inductively. Take a limit of $(U_i, g_i(t))$ to get a Ricci flow (M, g(t)).

Two key curvature estimates:

- $|\operatorname{Rm}|_{g_i(t)} \leq \frac{C}{t}$. Suppose this is not true, there is a sequence of Ricci flows converging to a κ -solution. The non-collapsing assumption implies the asymptotic volume ratio is non-zero, contradiction.
- Ric $\geq -C$, obtained by a bootstrap argument.

イロン イロン イヨン イヨン 三日

Theorem (Simon, Topping, 2017)

Let (M, g) be a 3d complete manifold. Suppose $Vol_g(B_g(x, 1)) \ge v_0$ (non-collapsing) and Ric ≥ -1 everywhere (curvature lower bound). Then there exists a Ricci flow $(M, g(t)), t \in [0, T]$ with g(0) = g.

Idea: Take an exhaustion of M by compact subsets U_i . For each U_i , construct a local Ricci flow $(U_i, g_i(t)), t \in [0, T]$, by running Shi's Ricci flow inductively. Take a limit of $(U_i, g_i(t))$ to get a Ricci flow (M, g(t)).

Two key curvature estimates:

- $|\operatorname{Rm}|_{g_i(t)} \leq \frac{C}{t}$. Suppose this is not true, there is a sequence of Ricci flows converging to a κ -solution. The non-collapsing assumption implies the asymptotic volume ratio is non-zero, contradiction.
- Ric $\geq -C$, obtained by a bootstrap argument.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Some invariant curvature conditions:

- (1) non-negative curvature operator;
- (2) non-negative complex sectional curvature (weakly PIC_2);
- (3) 2-non-negative curvature operator (Ric \geq 0 in 3d);
- (4) weakly PIC_1 ;

 $(1)(2) \Rightarrow sec \ge 0 \Rightarrow (3)(4) \Rightarrow Ric \ge 0$

A > < > > < > > -

Some invariant curvature conditions:

- (1) non-negative curvature operator;
- (2) non-negative complex sectional curvature (weakly PIC_2);
- (3) 2-non-negative curvature operator (Ric \geq 0 in 3d);
- (4) weakly PIC_1 ;
- $(1)(2) \Rightarrow \mathsf{sec} \geq 0 \Rightarrow (3)(4) \Rightarrow \mathsf{Ric} \geq 0$

A > < > > < > > -

Bamler, Cabezas-Rivas, Wilking, 2017

Let (M, g) be an n dimensional complete manifold. Suppose $Vol_g(B_g(x, 1)) \ge v_0$ (non-collapsing) and one of the following curvature is bounded below by -1 (curvature lower bound). Then there exists a Ricci flow $(M, g(t)), t \in [0, T]$ with g(0) = g:

(1) non-negative curvature operator;

(2) non-negative complex sectional curvature (weakly PIC₂);

Idea: Take a limit of $(U_i, g_i(t))$.

Two key curvature estimates:

• $|\operatorname{Rm}|_{g_i(t)} \leq \frac{C}{t}$.

• (1) (or (2)) $\geq -C$, obtained by a heat kernel method.

・ロン ・四 と ・ 回 と ・ 回 と

Bamler, Cabezas-Rivas, Wilking, 2017

Let (M, g) be an n dimensional complete manifold. Suppose $Vol_g(B_g(x, 1)) \ge v_0$ (non-collapsing) and one of the following curvature is bounded below by -1 (curvature lower bound). Then there exists a Ricci flow $(M, g(t)), t \in [0, T]$ with g(0) = g:

(1) non-negative curvature operator;

(2) non-negative complex sectional curvature (weakly PIC₂);

Idea: Take a limit of $(U_i, g_i(t))$.

Two key curvature estimates:

- $|\mathsf{Rm}|_{g_i(t)} \leq \frac{C}{t}$.
- (1) (or (2)) $\geq -C$, obtained by a heat kernel method.

イロト 不得 トイヨト イヨト

Combining these two works, we can generalize both of them to

L, 2018

Let (M, g) be an n dimensional complete manifold. Suppose $Vol_g(B_g(x, 1)) \ge v_0$ (non-collapsing) and one of the following curvature is bounded below by -1 (curvature lower bound). Then there exists a Ricci flow $(M, g(t)), t \in [0, T]$ with g(0) = g:

- (3) 2-non-negative curvature operator (\Leftrightarrow Ric \ge 0 in 3d);
- (4) weakly PIC_1 ;

Remark: The non-collapsing assumption cannot be removed, if we only assume a negative lower bound on curvature:

Combining these two works, we can generalize both of them to

L, 2018

Let (M, g) be an n dimensional complete manifold. Suppose $Vol_g(B_g(x, 1)) \ge v_0$ (non-collapsing) and one of the following curvature is bounded below by -1 (curvature lower bound). Then there exists a Ricci flow $(M, g(t)), t \in [0, T]$ with g(0) = g:

- (3) 2-non-negative curvature operator (\Leftrightarrow Ric \ge 0 in 3d);
- (4) weakly PIC_1 ;

Remark: The non-collapsing assumption cannot be removed, if we only assume a negative lower bound on curvature:

Combining these two works, we can generalize both of them to

L, 2018

Let (M, g) be an n dimensional complete manifold. Suppose $Vol_g(B_g(x, 1)) \ge v_0$ (non-collapsing) and one of the following curvature is bounded below by -1 (curvature lower bound). Then there exists a Ricci flow $(M, g(t)), t \in [0, T]$ with g(0) = g:

- (3) 2-non-negative curvature operator (\Leftrightarrow Ric \ge 0 in 3d);
- (4) weakly PIC_1 ;

Remark: The non-collapsing assumption cannot be removed, if we only assume a negative lower bound on curvature:

However, the non-collapsing assumption can be removed when assuming non-negative lower bound on certain curvatures:

Cabezas-Rivas, Wilking, 2011

In arbitrary dimension, there exists a complete Ricci flow starting from a complete manifold with non-negative complex sectional curvature.

Idea: take $(M_i, p_i) \rightarrow (M, p)$, where M_i is compact and has non-negative complex sectional curvature. So the same holds for $(M_i, g_i(t))$, $t \in [0, T_i]$, and $\lim_{t \nearrow T_i} Vol_t(M_i) = 0$. By Petrunin's result, $\int_{B_t(p_i, 1)} R \, dvol \leq C$, it implies $T_i \geq T$ for all *i*. Then take a convergent subsequence of $(M_i, g_i(t))$, $t \in [0, T]$.

Note, in 3d, complex sec $\geq 0 \Leftrightarrow$ sec $\geq 0 \Rightarrow$ Ric ≥ 0 .

Question: is Ric \geq 0 in 3d sufficient to run a Ricci flow?

イロト イポト イヨト イヨト

However, the non-collapsing assumption can be removed when assuming non-negative lower bound on certain curvatures:

Cabezas-Rivas, Wilking, 2011

In arbitrary dimension, there exists a complete Ricci flow starting from a complete manifold with non-negative complex sectional curvature.

Idea: take $(M_i, p_i) \rightarrow (M, p)$, where M_i is compact and has non-negative complex sectional curvature. So the same holds for $(M_i, g_i(t))$, $t \in [0, T_i]$, and $\lim_{t \nearrow T_i} Vol_t(M_i) = 0$. By Petrunin's result, $\int_{B_t(p_i, 1)} R \, dvol \leq C$, it implies $T_i \geq T$ for all *i*. Then take a convergent subsequence of $(M_i, g_i(t)), t \in [0, T]$.

Note, in 3d, complex sec $\geq 0 \Leftrightarrow$ sec $\geq 0 \Rightarrow$ Ric ≥ 0 .

Question: is Ric \geq 0 in 3d sufficient to run a Ricci flow?

<ロ> (四) (四) (三) (三) (三)

However, the non-collapsing assumption can be removed when assuming non-negative lower bound on certain curvatures:

Cabezas-Rivas, Wilking, 2011

In arbitrary dimension, there exists a complete Ricci flow starting from a complete manifold with non-negative complex sectional curvature.

Idea: take $(M_i, p_i) \rightarrow (M, p)$, where M_i is compact and has non-negative complex sectional curvature. So the same holds for $(M_i, g_i(t))$, $t \in [0, T_i]$, and $\lim_{t \nearrow T_i} Vol_t(M_i) = 0$. By Petrunin's result, $\int_{B_t(p_i, 1)} R \, dvol \leq C$, it implies $T_i \geq T$ for all *i*. Then take a convergent subsequence of $(M_i, g_i(t)), t \in [0, T]$.

Note, in 3d, complex sec $\geq 0 \Leftrightarrow$ sec $\geq 0 \Rightarrow$ Ric ≥ 0 .

Question: is Ric \geq 0 in 3d sufficient to run a Ricci flow?

A conjecture by Topping

Given a 3d complete Riemannian manifold (M,g) with Ric ≥ 0 , there is a smooth continuation by Ricci flow.

Main theorem (L, 2020)

Given a 3d complete Riemannian manifold (M,g) with Ric ≥ 0 , there is a smooth Ricci flow (M,g(t)), $t \in [0, T_{max})$, starting out from (M,g). Moreover, if $T_{max} < \infty$, then the curvature blows up everywhere when t goes up to T_{max} .

e.g. $T_{max} < \infty$: the standard solution, $S^2 \times \mathbb{R}$; $T_{max} = \infty$: Bryant soliton Strategy to construct the flow:

- run a generalized singular Ricci flow \mathcal{M} ;
- show Ric \geq 0 holds on \mathcal{M} ;
- \bullet show that ${\mathcal M}$ is actually smooth.

イロト イポト イヨト イヨト

A conjecture by Topping

Given a 3d complete Riemannian manifold (M,g) with Ric ≥ 0 , there is a smooth continuation by Ricci flow.

Main theorem (L, 2020)

Given a 3d complete Riemannian manifold (M,g) with Ric ≥ 0 , there is a smooth Ricci flow (M,g(t)), $t \in [0, T_{max})$, starting out from (M,g). Moreover, if $T_{max} < \infty$, then the curvature blows up everywhere when t goes up to T_{max} .

e.g. $T_{max} < \infty$: the standard solution, $S^2 \times \mathbb{R}$; $T_{max} = \infty$: Bryant soliton Strategy to construct the flow:

- run a generalized singular Ricci flow \mathcal{M} ;
- show Ric \geq 0 holds on \mathcal{M} ;
- \bullet show that ${\mathcal M}$ is actually smooth.

<ロ> (四) (四) (三) (三) (三)

A conjecture by Topping

Given a 3d complete Riemannian manifold (M,g) with Ric ≥ 0 , there is a smooth continuation by Ricci flow.

Main theorem (L, 2020)

Given a 3d complete Riemannian manifold (M,g) with Ric ≥ 0 , there is a smooth Ricci flow (M,g(t)), $t \in [0, T_{max})$, starting out from (M,g). Moreover, if $T_{max} < \infty$, then the curvature blows up everywhere when t goes up to T_{max} .

e.g. $T_{max} < \infty$: the standard solution, $S^2 \times \mathbb{R}$; $T_{max} = \infty$: Bryant soliton Strategy to construct the flow:

- run a generalized singular Ricci flow \mathcal{M} ;
- show Ric \geq 0 holds on \mathcal{M} ;
- show that \mathcal{M} is actually smooth.

<ロ> (四) (四) (三) (三) (三)

Part II Singular Ricci flow

< ∃⇒

æ

A Ricci flow spacetime $(\mathcal{M}, g(t))$ is the following:

- \mathcal{M} is a 4-manifold with boundary.
- time function $\mathfrak{t}: \mathcal{M} \to [0, T)$, time-t-slice \mathcal{M}_t , and $\mathcal{M}_0 = \partial \mathcal{M}$.
- ∂_t is a smooth vector field in \mathcal{M} , $\partial_t \mathfrak{t} = 1$.
- g is a metric on ker $(d\mathfrak{t})$.
- $\mathcal{L}_{\partial_t}g = -2\operatorname{Ric}(g(t)).$

Canonical neighborhood assumption (CNA): Let M be a 3d manifold. We say that the ϵ -CNA holds at $x \in M$, if (M, x) is ϵ -close to a κ -solution at scale $R(x)^{-1/2}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

2

A Ricci flow spacetime $(\mathcal{M}, g(t))$ is the following:

- \mathcal{M} is a 4-manifold with boundary.
- time function $\mathfrak{t}: \mathcal{M} \to [0, T)$, time-t-slice \mathcal{M}_t , and $\mathcal{M}_0 = \partial \mathcal{M}$.
- ∂_t is a smooth vector field in \mathcal{M} , $\partial_t \mathfrak{t} = 1$.
- g is a metric on ker $(d\mathfrak{t})$.
- $\mathcal{L}_{\partial_t}g = -2\operatorname{Ric}(g(t)).$

Canonical neighborhood assumption (CNA): Let M be a 3d manifold. We say that the ϵ -CNA holds at $x \in M$, if (M, x) is ϵ -close to a κ -solution at scale $R(x)^{-1/2}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

 ϵ -neck: A region that is ϵ -close to $S^2 \times \mathbb{R}$ under rescaling. strong ϵ -neck: A spacetime region that is ϵ -close to $(S^2 \times \mathbb{R}, g(t))$ for $t \in [-1, 0]$ under rescaling.

gradient estimates: If ϵ -CNA holds at x, then

$$|\nabla R^{-1/2}|(x) \le C, \quad |\partial_t R^{-1}|(x) \le C.$$
 (0.2)

We say a Ricci flow spacetime \mathcal{M} is 0-complete (resp. backward 0-complete) if for any smooth curve $\gamma : [0, s_0) \to \mathcal{M}$ that satisfies $\inf_{[0,s_0)} R(\gamma(s)) < \infty$ and one of the following, then $\lim_{s \to s_0} \gamma(s)$ exists:

- $\gamma([0, s_0))$ is contained in a time-slice \mathcal{M}_t , and has finite length with respect to the horizontal metric in \mathcal{M}_t , or
- γ is the integral curve of $-\partial_t$, or ∂_t (resp. only $-\partial_t$).

 ϵ -neck: A region that is ϵ -close to $S^2 \times \mathbb{R}$ under rescaling.

strong ϵ -neck: A spacetime region that is ϵ -close to $(S^2 \times \mathbb{R}, g(t))$ for $t \in [-1, 0]$ under rescaling.

gradient estimates: If ϵ -CNA holds at x, then

$$|\nabla R^{-1/2}|(x) \le C, \quad |\partial_t R^{-1}|(x) \le C.$$
 (0.2)

We say a Ricci flow spacetime \mathcal{M} is 0-complete (resp. backward 0-complete) if for any smooth curve $\gamma : [0, s_0) \to \mathcal{M}$ that satisfies $\inf_{[0,s_0)} R(\gamma(s)) < \infty$ and one of the following, then $\lim_{s \to s_0} \gamma(s)$ exists:

- $\gamma([0, s_0))$ is contained in a time-slice \mathcal{M}_t , and has finite length with respect to the horizontal metric in \mathcal{M}_t , or
- γ is the integral curve of $-\partial_t$, or ∂_t (resp. only $-\partial_t$).

 ϵ -neck: A region that is ϵ -close to $S^2 \times \mathbb{R}$ under rescaling.

strong ϵ -neck: A spacetime region that is ϵ -close to $(S^2 \times \mathbb{R}, g(t))$ for $t \in [-1, 0]$ under rescaling.

gradient estimates: If ϵ -CNA holds at x, then

$$|\nabla R^{-1/2}|(x) \le C, \quad |\partial_t R^{-1}|(x) \le C.$$
 (0.2)

We say a Ricci flow spacetime \mathcal{M} is 0-complete (resp. backward 0-complete) if for any smooth curve $\gamma : [0, s_0) \to \mathcal{M}$ that satisfies $\inf_{[0,s_0)} R(\gamma(s)) < \infty$ and one of the following, then $\lim_{s \to s_0} \gamma(s)$ exists:

- γ([0, s₀)) is contained in a time-slice M_t, and has finite length with respect to the horizontal metric in M_t, or
- γ is the integral curve of $-\partial_t$, or ∂_t (resp. only $-\partial_t$).

イロト 不得 トイラト イラト・ラ

Theorem (Kleiner,Lott, 2014)

Let (M, g) be a 3d compact manifold, then there exists a **singular Ricci** flow starting from M, which is a Ricci flow spacetime that satisfies

- $\mathcal{M}_0 = M$ is compact;
- \mathcal{M} is 0-complete;
- For any $x \in \mathcal{M}$, $\mathfrak{t}(x) \leq T$, if $R(x) \geq r^{-2}(T)$, then the ϵ -CNA holds at x.

Theorem: For any $x_0 \in M$, suppose x_0 survives until $t_0 > 0$, then

$$\mathcal{N} := \bigcup_{t=[0,t_0]} \bigcup_{A>0} B_t(x_0(t), A) \tag{0.3}$$

is backward 0-complete.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Kleiner,Lott, 2014)

Let (M, g) be a 3d compact manifold, then there exists a **singular Ricci** flow starting from M, which is a Ricci flow spacetime that satisfies

- $\mathcal{M}_0 = M$ is compact;
- \mathcal{M} is 0-complete;
- For any $x \in \mathcal{M}$, $\mathfrak{t}(x) \leq T$, if $R(x) \geq r^{-2}(T)$, then the ϵ -CNA holds at x.

Theorem: For any $x_0 \in M$, suppose x_0 survives until $t_0 > 0$, then

$$\mathcal{N} := \bigcup_{t=[0,t_0]} \bigcup_{A>0} B_t(x_0(t),A) \tag{0.3}$$

is backward 0-complete.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $(\mathcal{M}, g(t))$ be a singular Ricci flow with normalized initial condition, $x_0 \in \mathcal{M}$, $\mathfrak{t}(x_0) = t_0$. Suppose $|\mathsf{Rm}| \le r_0^{-2}$ in $\mathcal{P}_0 := P(x_0, t_0, r_0, -r_0^2)$, then

Theorem (Heat kernel)

Then there is a solution $u \ge 0$ to $(-\partial_t - \Delta + R)u = 0$, u is a δ -function at x_0 , and $C_m = C_m(r_0)$, such that

$$uR^m \le C_m \quad \text{in} \quad \mathcal{M}_{t < t_0} - \mathcal{P}_0 \tag{0.4}$$

Step 1 (construct u): Let $\mathcal{M}_i \to \mathcal{M}$ be a sequence of Ricci flow with surgeries. Define u_i on \mathcal{M}_i by integrating with the ordinary heat kernels. Then $u_i \to u$.

イロン 不同 とくほと 不良 とう

臣

Let $(\mathcal{M}, g(t))$ be a singular Ricci flow with normalized initial condition, $x_0 \in \mathcal{M}$, $\mathfrak{t}(x_0) = t_0$. Suppose $|\mathsf{Rm}| \le r_0^{-2}$ in $\mathcal{P}_0 := P(x_0, t_0, r_0, -r_0^2)$, then

Theorem (Heat kernel)

Then there is a solution $u \ge 0$ to $(-\partial_t - \Delta + R)u = 0$, u is a δ -function at x_0 , and $C_m = C_m(r_0)$, such that

$$uR^m \le C_m \quad \text{in} \quad \mathcal{M}_{t < t_0} - \mathcal{P}_0 \tag{0.4}$$

Step 1 (construct u): Let $\mathcal{M}_i \to \mathcal{M}$ be a sequence of Ricci flow with surgeries. Define u_i on \mathcal{M}_i by integrating with the ordinary heat kernels. Then $u_i \to u$.

Let $(\mathcal{M}, g(t))$ be a singular Ricci flow with normalized initial condition, $x_0 \in \mathcal{M}$, $\mathfrak{t}(x_0) = t_0$. Suppose $|\mathsf{Rm}| \le r_0^{-2}$ in $\mathcal{P}_0 := P(x_0, t_0, r_0, -r_0^2)$, then

Theorem (Heat kernel)

Then there is a solution $u \ge 0$ to $(-\partial_t - \Delta + R)u = 0$, u is a δ -function at x_0 , and $C_m = C_m(r_0)$, such that

$$uR^m \le C_m \quad \text{in} \quad \mathcal{M}_{t < t_0} - \mathcal{P}_0 \tag{0.4}$$

Step 1 (construct u): Let $\mathcal{M}_i \to \mathcal{M}$ be a sequence of Ricci flow with surgeries. Define u_i on \mathcal{M}_i by integrating with the ordinary heat kernels. Then $u_i \to u$.

イロト 不得 トイラト イラト 二日

Step 2 (a vanishing theorem): Studying the solution $u \ge 0$ to $(-\partial_t - \Delta + R)u = 0$ in a non-compact κ -solution on $[0, T_{max})$.

For example, in a Bryant soliton: If $uR^m \leq C$, then $u \equiv 0$.

Step 3 (a semi-local maximum principle): For any x_1 with sufficiently large R, there is x_2 with $\mathfrak{t}(x_2) \ge \mathfrak{t}(x_1)$ such that

$$\begin{cases} uR^m(x_2) \ge (1+\epsilon_m)uR^m(x_1), \\ u(x_2) \ge (1+\epsilon_m)u(x_1). \end{cases}$$
(0.5)

Prove (0.5) by a limiting argument: Suppose it is violated in a sequence $(\mathcal{M}_i, x_i, u_i)$, with $R(x_i) \to \infty$. Then rescale each flow by $R(x_i)$, and rescale u_i such that $u_i(x_i) = 1$. Then

$$(\mathcal{M}_i, x_i, u_i) \to (g_{\infty}(t), x_{\infty}, u_{\infty}), \tag{0.6}$$

where $g_{\infty}(t)$ is a non-compact κ -solution defined on $[0, T_{\max})$. By step 2 we get a contradiction. Prove the theorem by using (Q_5) repeatedly.

Step 2 (a vanishing theorem): Studying the solution $u \ge 0$ to $(-\partial_t - \Delta + R)u = 0$ in a non-compact κ -solution on $[0, T_{max})$.

For example, in a Bryant soliton: If $uR^m \leq C$, then $u \equiv 0$.

Step 3 (a semi-local maximum principle): For any x_1 with sufficiently large R, there is x_2 with $\mathfrak{t}(x_2) \ge \mathfrak{t}(x_1)$ such that

$$\begin{cases} uR^m(x_2) \ge (1+\epsilon_m)uR^m(x_1), \\ u(x_2) \ge (1+\epsilon_m)u(x_1). \end{cases}$$
(0.5)

Prove (0.5) by a limiting argument: Suppose it is violated in a sequence $(\mathcal{M}_i, x_i, u_i)$, with $R(x_i) \to \infty$. Then rescale each flow by $R(x_i)$, and rescale u_i such that $u_i(x_i) = 1$. Then

$$(\mathcal{M}_i, x_i, u_i) \to (g_{\infty}(t), x_{\infty}, u_{\infty}), \qquad (0.6)$$

where $g_{\infty}(t)$ is a non-compact κ -solution defined on $[0, T_{\max})$. By step 2 we get a contradiction. Prove the theorem by using (Q_5) repeatedly.

Step 2 (a vanishing theorem): Studying the solution $u \ge 0$ to $(-\partial_t - \Delta + R)u = 0$ in a non-compact κ -solution on $[0, T_{max})$.

For example, in a Bryant soliton: If $uR^m \leq C$, then $u \equiv 0$.

Step 3 (a semi-local maximum principle): For any x_1 with sufficiently large R, there is x_2 with $\mathfrak{t}(x_2) \ge \mathfrak{t}(x_1)$ such that

$$\begin{cases} uR^m(x_2) \ge (1+\epsilon_m)uR^m(x_1), \\ u(x_2) \ge (1+\epsilon_m)u(x_1). \end{cases}$$
(0.5)

Prove (0.5) by a limiting argument: Suppose it is violated in a sequence $(\mathcal{M}_i, x_i, u_i)$, with $R(x_i) \to \infty$. Then rescale each flow by $R(x_i)$, and rescale u_i such that $u_i(x_i) = 1$. Then

$$(\mathcal{M}_i, x_i, u_i) \to (g_{\infty}(t), x_{\infty}, u_{\infty}), \qquad (0.6)$$

where $g_{\infty}(t)$ is a non-compact κ -solution defined on $[0, T_{max})$. By step 2 we get a contradiction. Prove the theorem by using (0.5) repeatedly.

Corollary: Pseudolocality theorem for singular Ricci flows.

Canonical neighborhood theorem

Let (\mathcal{M}, g, x_0) be a singular Ricci flow, $x_0 \in \mathcal{M}_0$. Suppose $|\mathsf{Rm}| \leq 1$ and $vol(B_1(x_0, 1)) \geq A^{-1}$ on $P(x_0, 0; 1, 1)$. Then there exists r(A) > 0 such that the ϵ -CNA holds in $B_1(x_0, A)$ at scales less than r(A).

Remark: Unlike the case of Ricci flow with surgeries, there is no need to assume that the initial condition of \mathcal{M} is normalized, thanks to the 'zero-surgery scale' of the singular Ricci flow.

Corollary: Pseudolocality theorem for singular Ricci flows.

Canonical neighborhood theorem

Let (\mathcal{M}, g, x_0) be a singular Ricci flow, $x_0 \in \mathcal{M}_0$. Suppose $|\mathsf{Rm}| \leq 1$ and $vol(B_1(x_0, 1)) \geq A^{-1}$ on $P(x_0, 0; 1, 1)$. Then there exists r(A) > 0 such that the ϵ -CNA holds in $B_1(x_0, A)$ at scales less than r(A).

Remark: Unlike the case of Ricci flow with surgeries, there is no need to assume that the initial condition of \mathcal{M} is normalized, thanks to the 'zero-surgery scale' of the singular Ricci flow.

イロト イヨト イヨト

Corollary: Pseudolocality theorem for singular Ricci flows.

Canonical neighborhood theorem

Let (\mathcal{M}, g, x_0) be a singular Ricci flow, $x_0 \in \mathcal{M}_0$. Suppose $|\mathsf{Rm}| \leq 1$ and $vol(B_1(x_0, 1)) \geq A^{-1}$ on $P(x_0, 0; 1, 1)$. Then there exists r(A) > 0 such that the ϵ -CNA holds in $B_1(x_0, A)$ at scales less than r(A).

Remark: Unlike the case of Ricci flow with surgeries, there is no need to assume that the initial condition of \mathcal{M} is normalized, thanks to the 'zero-surgery scale' of the singular Ricci flow.

・ロト ・回ト ・ヨト ・ヨト

Corollary: Pseudolocality theorem for singular Ricci flows.

Canonical neighborhood theorem

Let (\mathcal{M}, g, x_0) be a singular Ricci flow, $x_0 \in \mathcal{M}_0$. Suppose $|\mathsf{Rm}| \leq 1$ and $vol(B_1(x_0, 1)) \geq A^{-1}$ on $P(x_0, 0; 1, 1)$. Then there exists r(A) > 0 such that the ϵ -CNA holds in $B_1(x_0, A)$ at scales less than r(A).

Remark: Unlike the case of Ricci flow with surgeries, there is no need to assume that the initial condition of \mathcal{M} is normalized, thanks to the 'zero-surgery scale' of the singular Ricci flow.

<回> < 回> < 回> < 回>

Part III Generalized singular Ricci flow

B 1 4 B 1

臣

Theorem (L, 2020)

Let (M, g) be a 3d complete manifold (with possibly unbounded curvature). Then there exists a **generalized singular Ricci flow** \mathcal{M} starting from (M, g), which is a Ricci flow spacetime that satisfies:

- $\mathcal{M}_0 = M$ is complete;
- *M* is 0-complete;
- For any fixed $x_0 \in \mathcal{M}$, $\mathfrak{t}(x_0) = t_0$, ϵ -CNA holds on $B_{t_0}(x_0, A)$ at scales (0, r(A)).

向 ト イヨ ト イヨト

Pick $x_0 \in M$, and a sequence of compact manifolds

$$(M_i, x_{0i}) \longrightarrow (M, x_0). \tag{0.7}$$

Let \mathcal{M}_i be singular Ricci flows with $\mathcal{M}_{i,0} = M_i$.

By the pseudolocality theorem,

 $x \in B_t(x_{0i}, A), t \in [0, t(A)] \Rightarrow |\mathsf{Rm}|(x) \le C(A).$

Take T = t(10). By the canonical neighborhood theorem,

 $x \in B_t(x_{0i}, A)$, $t \in [t(A), T] \Rightarrow \epsilon$ -CNA holds if $|\mathsf{Rm}| \ge r(A)^{-2}$.

In summary, by decreasing r(A), we have

 $x \in B_t(x_{0i}, A), t \in [0, T] \Rightarrow \epsilon$ -CNA holds if $|\mathsf{Rm}| \ge r(A)^{-2}$.

Therefore, for any fixed A, $B_t(x_{0i}, A)$ is uniformly totally bounded.

(日本)(日本)(日本)(日本)

Pick $x_0 \in M$, and a sequence of compact manifolds

$$(M_i, x_{0i}) \longrightarrow (M, x_0). \tag{0.7}$$

Let \mathcal{M}_i be singular Ricci flows with $\mathcal{M}_{i,0} = M_i$.

By the pseudolocality theorem,

 $x \in B_t(x_{0i}, A), t \in [0, t(A)] \Rightarrow |\mathsf{Rm}|(x) \leq C(A).$

Take T = t(10). By the canonical neighborhood theorem,

 $x \in B_t(x_{0i}, A), t \in [t(A), T] \Rightarrow \epsilon$ -CNA holds if $|\mathsf{Rm}| \ge r(A)^{-2}$.

In summary, by decreasing r(A), we have

 $x \in B_t(x_{0i}, A), t \in [0, T] \Rightarrow \epsilon$ -CNA holds if $|\mathsf{Rm}| \ge r(A)^{-2}$.

Therefore, for any fixed A, $B_t(x_{0i}, A)$ is uniformly totally bounded.

Pick $x_0 \in M$, and a sequence of compact manifolds

$$(M_i, x_{0i}) \longrightarrow (M, x_0). \tag{0.7}$$

Let \mathcal{M}_i be singular Ricci flows with $\mathcal{M}_{i,0} = M_i$.

By the pseudolocality theorem,

 $x \in B_t(x_{0i}, A), t \in [0, t(A)] \Rightarrow |\mathsf{Rm}|(x) \leq C(A).$ Take T = t(10). By the canonical neighborhood theorem, $x \in B_t(x_{0i}, A), t \in [t(A), T] \Rightarrow \epsilon$ -CNA holds if $|\mathsf{Rm}| \geq r(A)^{-2}$. In summary, by decreasing r(A), we have $x \in B_t(x_{0i}, A), t \in [0, T] \Rightarrow \epsilon$ -CNA holds if $|\mathsf{Rm}| \geq r(A)^{-2}$. Therefore, for any fixed $A, B_t(x_{0i}, A)$ is uniformly totally bounded

御 医 金属 医 金属 医二角

Pick $x_0 \in M$, and a sequence of compact manifolds

$$(M_i, x_{0i}) \longrightarrow (M, x_0). \tag{0.7}$$

Let \mathcal{M}_i be singular Ricci flows with $\mathcal{M}_{i,0} = M_i$.

By the pseudolocality theorem,

 $x \in B_t(x_{0i}, A), t \in [0, t(A)] \Rightarrow |\mathsf{Rm}|(x) \leq C(A).$ Take T = t(10). By the canonical neighborhood theorem, $x \in B_t(x_{0i}, A), t \in [t(A), T] \Rightarrow \epsilon$ -CNA holds if $|\mathsf{Rm}| \geq r(A)^{-2}$. In summary, by decreasing r(A), we have $x \in B_t(x_{0i}, A), t \in [0, T] \Rightarrow \epsilon$ -CNA holds if $|\mathsf{Rm}| \geq r(A)^{-2}$.

Therefore, for any fixed A, $B_t(x_{0i}, A)$ is uniformly totally bounded.

同 ト イヨ ト イヨ ト ヨ ・ つくべ

Pick $x_0 \in M$, and a sequence of compact manifolds

$$(M_i, x_{0i}) \longrightarrow (M, x_0). \tag{0.7}$$

Let \mathcal{M}_i be singular Ricci flows with $\mathcal{M}_{i,0} = M_i$.

By the pseudolocality theorem,

 $x \in B_t(x_{0i}, A), t \in [0, t(A)] \Rightarrow |\operatorname{Rm}|(x) \leq C(A).$ Take T = t(10). By the canonical neighborhood theorem, $x \in B_t(x_{0i}, A), t \in [t(A), T] \Rightarrow \epsilon$ -CNA holds if $|\operatorname{Rm}| \geq r(A)^{-2}$. In summary, by decreasing r(A), we have $x \in B_t(x_{0i}, A), t \in [0, T] \Rightarrow \epsilon$ -CNA holds if $|\operatorname{Rm}| \geq r(A)^{-2}$. Therefore, for any fixed $A, B_t(x_{0i}, A)$ is uniformly totally bounded.

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 → りへ(?)

Let $G_i = dt^2 + g_i(t)$, and d_i be the metric induced by G_i .

Let $P_i(A) := \bigcup_{t \in [0,T]} B_t(x_{0i}, A)$. Then $(P_i(A), d_i)$ is uniformly totally bounded. So

$$(P_i(A), d_i) \xrightarrow{GH} (X(A), d_A).$$
 (0.8)

Let $\mathcal{N}_i = \bigcup_{A>0} P_i(A)$, then

$$(\mathcal{N}_i, d_i, x_{0i}) \xrightarrow{pGH} (X, d, x_0).$$
 (0.9)

Let $\mathcal{M} = \{$ 'smooth points' in $X\}$. By the gradient estimate, there is a smooth spacetime metric on \mathcal{M} , $\mathfrak{t}(\mathcal{M}) = [0, T)$, and

$$(\mathcal{N}_i, g_i(t), x_{0i}) \xrightarrow{smoothly} (\mathcal{M}, x_0).$$
(0.10)

• □ ▶ • □ ▶ • □ ▶ • □ ▶ • □ ▶

Let $G_i = dt^2 + g_i(t)$, and d_i be the metric induced by G_i . Let $P_i(A) := \bigcup_{t \in [0,T)} B_t(x_{0i}, A)$. Then $(P_i(A), d_i)$ is uniformly totally bounded. So $(P_i(A), d_i) \xrightarrow{GH} (X(A), d_A)$. (0.8)

Let $\mathcal{N}_i = \bigcup_{A>0} P_i(A)$, then

$$(\mathcal{N}_i, d_i, x_{0i}) \xrightarrow{pGH} (X, d, x_0). \tag{0.9}$$

Let $\mathcal{M} = \{$ 'smooth points' in $X\}$. By the gradient estimate, there is a smooth spacetime metric on \mathcal{M} , $\mathfrak{t}(\mathcal{M}) = [0, T)$, and

$$(\mathcal{N}_i, g_i(t), x_{0i}) \xrightarrow{smoothly} (\mathcal{M}, x_0).$$
 (0.10)

・ロト ・回ト ・ヨト ・ヨト … ヨ

Let $G_i = dt^2 + g_i(t)$, and d_i be the metric induced by G_i . Let $P_i(A) := \bigcup_{t \in [0,T)} B_t(x_{0i}, A)$. Then $(P_i(A), d_i)$ is uniformly totally bounded. So $(P_i(A), d_i) \xrightarrow{GH} (X(A), d_A)$. (0.8)

Let $\mathcal{N}_i = \bigcup_{A>0} P_i(A)$, then

$$(\mathcal{N}_i, d_i, x_{0i}) \xrightarrow{pGH} (X, d, x_0). \tag{0.9}$$

Let $\mathcal{M} = \{$ 'smooth points' in $X\}$. By the gradient estimate, there is a smooth spacetime metric on \mathcal{M} , $\mathfrak{t}(\mathcal{M}) = [0, T)$, and

$$(\mathcal{N}_i, g_i(t), x_{0i}) \xrightarrow{smoothly} (\mathcal{M}, x_0).$$
 (0.10)

・ロト ・回ト ・ヨト ・ヨト … ヨ

Let $G_i = dt^2 + g_i(t)$, and d_i be the metric induced by G_i . Let $P_i(A) := \bigcup_{t \in [0,T)} B_t(x_{0i}, A)$. Then $(P_i(A), d_i)$ is uniformly totally bounded. So $(P_i(A), d_i) \xrightarrow{GH} (X(A), d_A)$. (0.8)

Let $\mathcal{N}_i = \bigcup_{A>0} P_i(A)$, then

$$(\mathcal{N}_i, d_i, x_{0i}) \xrightarrow{\rho G H} (X, d, x_0). \tag{0.9}$$

Let $\mathcal{M} = \{$ 'smooth points' in $X\}$. By the gradient estimate, there is a smooth spacetime metric on \mathcal{M} , $\mathfrak{t}(\mathcal{M}) = [0, T)$, and

$$(\mathcal{N}_i, g_i(t), x_{0i}) \xrightarrow{smoothly} (\mathcal{M}, x_0).$$
(0.10)

- 4 回 ト 4 日 ト - 日 日

Moreover, we can show that (\mathcal{M}, x_0) is backward 0-complete. By taking a 'union' of all such (\mathcal{M}, x_0) we get a generalized singular Ricci flow.

Moreover, we can show that (\mathcal{M}, x_0) is backward 0-complete. By taking a 'union' of all such (\mathcal{M}, x_0) we get a generalized singular Ricci flow.

Moreover, we can show that (\mathcal{M}, x_0) is backward 0-complete. By taking a 'union' of all such (\mathcal{M}, x_0) we get a generalized singular Ricci flow.

Moreover, we can show that (\mathcal{M}, x_0) is backward 0-complete. By taking a 'union' of all such (\mathcal{M}, x_0) we get a generalized singular Ricci flow.

Part IV Proof of the main theorem

★ E ► ★ E ►

æ.

Lemma

Let (M,g) be a complete 3-manifold with Ric ≥ 0 (resp. $R \geq 0$). Let \mathcal{M} be a generalized singular Ricci flow starting from (M,g). Then Ric ≥ 0 (resp. $R \geq 0$) on \mathcal{M} .

To show $R \ge 0$ is preserved, note

- In each M_t , R is positive in the high curvature regions. So $R_{\min} < 0$ is achieved at some point.
- $\bigcup_{t \in [0,T)} \bigcup_{A>0} B_t(x_0(t), A)$ is backward 0-complete. It guarantees

$$\liminf_{t \searrow t_0} R_{\min}(t) \ge R_{\min}(t_0). \tag{0.11}$$

Then apply maximum principle.

We can show $\operatorname{Ric} \ge 0$ in a similar way.

・ロト ・回ト ・ヨト ・ヨト

Lemma

Let (M,g) be a complete 3-manifold with Ric ≥ 0 (resp. $R \geq 0$). Let \mathcal{M} be a generalized singular Ricci flow starting from (M,g). Then Ric ≥ 0 (resp. $R \geq 0$) on \mathcal{M} .

To show $R \ge 0$ is preserved, note

- In each *M_t*, *R* is positive in the high curvature regions. So *R_{min}* < 0 is achieved at some point.
- $\bigcup_{t \in [0,T)} \bigcup_{A>0} B_t(x_0(t), A)$ is backward 0-complete. It guarantees

$$\liminf_{t \searrow t_0} R_{\min}(t) \ge R_{\min}(t_0). \tag{0.11}$$

Then apply maximum principle.

We can show Ric \geq 0 in a similar way.

イロト イポト イヨト イヨト

Lemma

Let (M,g) be a complete 3-manifold with Ric ≥ 0 (resp. $R \geq 0$). Let \mathcal{M} be a generalized singular Ricci flow starting from (M,g). Then Ric ≥ 0 (resp. $R \geq 0$) on \mathcal{M} .

To show $R \ge 0$ is preserved, note

- In each *M_t*, *R* is positive in the high curvature regions. So *R_{min}* < 0 is achieved at some point.
- $\bigcup_{t \in [0,T)} \bigcup_{A>0} B_t(x_0(t), A)$ is backward 0-complete. It guarantees

$$\liminf_{t \searrow t_0} R_{\min}(t) \ge R_{\min}(t_0). \tag{0.11}$$

Then apply maximum principle.

We can show $Ric \ge 0$ in a similar way.

< ロ > < 同 > < 三 > < 三 >

Main theorem (L, 2020)

Given a 3d complete Riemannian manifold (M,g) with Ric ≥ 0 , there is a smooth Ricci flow (M,g(t)), $t \in [0, T_{max})$, starting out from (M,g). Moreover, if $T_{max} < \infty$, then the curvature blows up everywhere when t goes up to T.

Proof: Let $(\mathcal{M}, g(t))$ be a generalized singular Ricci flow starting from \mathcal{M} . Let $x_0 \in \mathcal{M}$. Suppose x_0 survives until $\mathcal{T} > 0$. We claim that \mathcal{M}_t is complete for all $t \in [0, \mathcal{T}]$.

Suppose not, then for some t, A > 0 there is a minimizing geodesic $\gamma : [0,1) \to B_t(x_0, A)$ such that $\lim_{s \to 1} R(\gamma(s)) = \infty$, and $\gamma(s)$ is center of strong ϵ -necks for all s close to 1.

Main theorem (L, 2020)

Given a 3d complete Riemannian manifold (M,g) with Ric ≥ 0 , there is a smooth Ricci flow (M,g(t)), $t \in [0, T_{max})$, starting out from (M,g). Moreover, if $T_{max} < \infty$, then the curvature blows up everywhere when t goes up to T.

Proof: Let $(\mathcal{M}, g(t))$ be a generalized singular Ricci flow starting from \mathcal{M} . Let $x_0 \in \mathcal{M}$. Suppose x_0 survives until T > 0. We claim that \mathcal{M}_t is complete for all $t \in [0, T]$.

Suppose not, then for some t, A > 0 there is a minimizing geodesic $\gamma : [0,1) \to B_t(x_0, A)$ such that $\lim_{s \to 1} R(\gamma(s)) = \infty$, and $\gamma(s)$ is center of strong ϵ -necks for all s close to 1.

Main theorem (L, 2020)

Given a 3d complete Riemannian manifold (M,g) with Ric ≥ 0 , there is a smooth Ricci flow (M,g(t)), $t \in [0, T_{max})$, starting out from (M,g). Moreover, if $T_{max} < \infty$, then the curvature blows up everywhere when t goes up to T.

Proof: Let $(\mathcal{M}, g(t))$ be a generalized singular Ricci flow starting from \mathcal{M} . Let $x_0 \in \mathcal{M}$. Suppose x_0 survives until T > 0. We claim that \mathcal{M}_t is complete for all $t \in [0, T]$.

Suppose not, then for some t, A > 0 there is a minimizing geodesic $\gamma : [0,1) \to B_t(x_0, A)$ such that $\lim_{s \to 1} R(\gamma(s)) = \infty$, and $\gamma(s)$ is center of strong ϵ -necks for all s close to 1.

$$\lambda X \xrightarrow{GH} X_{\infty}, \text{ as } \lambda \to \infty.$$
 (0.12)

Then by Ric \geq 0, we can show X_{∞} is a smooth cone.

Since for any $x \in X_{\infty}$, x is the center of a strong 2ϵ -neck, X_{∞} is flat. However, by the gradient estimate on X,

$$|\nabla R^{-\frac{1}{2}}| \le C \Rightarrow R^{-\frac{1}{2}}(x) \le C d(x, p).$$
 (0.13)

So X_{∞} is not flat, a contradiction. So \mathcal{M}_t is complete for all $t \in [0, T]$. Since Ric ≥ 0 , we have $d_t(x, x_0) \leq d_0(x, x_0)$ for any $x \in M$. So M survives until T, and $M \times [0, T] \subset \mathcal{M}$ is a smooth Ricci flow.

$$\lambda X \xrightarrow{GH} X_{\infty}, \text{ as } \lambda \to \infty.$$
 (0.12)

Then by Ric \geq 0, we can show X_{∞} is a smooth cone.

Since for any $x \in X_{\infty}$, x is the center of a strong 2ϵ -neck, X_{∞} is flat. However, by the gradient estimate on X,

$$|\nabla R^{-\frac{1}{2}}| \le C \Rightarrow R^{-\frac{1}{2}}(x) \le C d(x, p).$$
 (0.13)

So X_{∞} is not flat, a contradiction. So \mathcal{M}_t is complete for all $t \in [0, T]$. Since Ric ≥ 0 , we have $d_t(x, x_0) \leq d_0(x, x_0)$ for any $x \in M$. So M survives until T, and $M \times [0, T] \subset \mathcal{M}$ is a smooth Ricci flow.

イロト イポト イヨト イヨト

$$\lambda X \xrightarrow{GH} X_{\infty}, \text{ as } \lambda \to \infty.$$
 (0.12)

Then by Ric \geq 0, we can show X_{∞} is a smooth cone.

Since for any $x \in X_{\infty}$, x is the center of a strong 2ϵ -neck, X_{∞} is flat. However, by the gradient estimate on X,

$$|\nabla R^{-\frac{1}{2}}| \le C \Rightarrow R^{-\frac{1}{2}}(x) \le C d(x, p).$$
 (0.13)

So X_{∞} is not flat, a contradiction. So \mathcal{M}_t is complete for all $t \in [0, T]$ Since Ric ≥ 0 , we have $d_t(x, x_0) \leq d_0(x, x_0)$ for any $x \in M$. So M survives until T, and $M \times [0, T] \subset \mathcal{M}$ is a smooth Ricci flow.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\lambda X \xrightarrow{GH} X_{\infty}, \text{ as } \lambda \to \infty.$$
 (0.12)

Then by Ric \geq 0, we can show X_{∞} is a smooth cone.

Since for any $x \in X_{\infty}$, x is the center of a strong 2ϵ -neck, X_{∞} is flat. However, by the gradient estimate on X,

$$|\nabla R^{-\frac{1}{2}}| \le C \Rightarrow R^{-\frac{1}{2}}(x) \le C d(x, p).$$
 (0.13)

So X_{∞} is not flat, a contradiction. So \mathcal{M}_t is complete for all $t \in [0, T]$.

Since Ric ≥ 0 , we have $d_t(x, x_0) \leq d_0(x, x_0)$ for any $x \in M$. So M survives until T, and $M \times [0, T] \subset M$ is a smooth Ricci flow.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

$$\lambda X \xrightarrow{GH} X_{\infty}, \text{ as } \lambda \to \infty.$$
 (0.12)

Then by Ric \geq 0, we can show X_{∞} is a smooth cone.

Since for any $x \in X_{\infty}$, x is the center of a strong 2ϵ -neck, X_{∞} is flat. However, by the gradient estimate on X,

$$|\nabla R^{-\frac{1}{2}}| \le C \Rightarrow R^{-\frac{1}{2}}(x) \le C d(x, p).$$
 (0.13)

So X_{∞} is not flat, a contradiction. So \mathcal{M}_t is complete for all $t \in [0, T]$. Since Ric ≥ 0 , we have $d_t(x, x_0) \leq d_0(x, x_0)$ for any $x \in M$. So M survives until T, and $M \times [0, T] \subset \mathcal{M}$ is a smooth Ricci flow.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Thanks for your listening!

★ E ► ★ E ►

æ