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Introduction

Ricci flow equation:
d

dt
g(t) = −2Ric(g(t)) (0.1)

Theorem (Hamilton)

Let M be a compact n-dimensional manifold, there exists a short time
Ricci flow starting from M.

Compact RF preserves Ric ≥ 0 in 3d. Curvature blows up in finite time.

Theorem (Shi)

Let M be a complete n-dimensional manifold with bounded curvature,
there exists a short time complete Ricci flow starting from M.

Shi’s RF preserves Ric ≥ 0 in 3d.
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Introduction

Theorem (Simon,Topping, 2017)

Let (M, g) be a 3d complete manifold. Suppose Volg (Bg (x , 1)) ≥ v0
(non-collapsing) and Ric ≥ −1 everywhere (curvature lower bound). Then
there exists a Ricci flow (M, g(t)), t ∈ [0,T ] with g(0) = g .

Idea: Take an exhaustion of M by compact subsets Ui . For each Ui ,
construct a local Ricci flow (Ui , gi (t)), t ∈ [0,T ], by running Shi’s Ricci
flow inductively. Take a limit of (Ui , gi (t)) to get a Ricci flow (M, g(t)).

Two key curvature estimates:

|Rm|gi (t) ≤
C
t . Suppose this is not true, there is a sequence of Ricci

flows converging to a κ-solution. The non-collapsing assumption
implies the asymptotic volume ratio is non-zero, contradiction.

Ric ≥ −C , obtained by a bootstrap argument.
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Introduction

Some invariant curvature conditions:

(1) non-negative curvature operator;

(2) non-negative complex sectional curvature (weakly PIC2);

(3) 2-non-negative curvature operator (Ric ≥ 0 in 3d);

(4) weakly PIC1;

(1)(2) ⇒ sec ≥ 0 ⇒ (3)(4) ⇒ Ric ≥ 0
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Introduction

Bamler,Cabezas-Rivas,Wilking, 2017

Let (M, g) be an n dimensional complete manifold. Suppose
Volg (Bg (x , 1)) ≥ v0 (non-collapsing) and one of the following curvature is
bounded below by −1 (curvature lower bound). Then there exists a Ricci
flow (M, g(t)), t ∈ [0,T ] with g(0) = g :

(1) non-negative curvature operator;

(2) non-negative complex sectional curvature (weakly PIC2);

Idea: Take a limit of (Ui , gi (t)).

Two key curvature estimates:

|Rm|gi (t) ≤
C
t .

(1) (or (2)) ≥ −C , obtained by a heat kernel method.
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Introduction

Combining these two works, we can generalize both of them to

L, 2018

Let (M, g) be an n dimensional complete manifold. Suppose
Volg (Bg (x , 1)) ≥ v0 (non-collapsing) and one of the following curvature is
bounded below by −1 (curvature lower bound). Then there exists a Ricci
flow (M, g(t)), t ∈ [0,T ] with g(0) = g :

(3) 2-non-negative curvature operator (⇔ Ric ≥ 0 in 3d);

(4) weakly PIC1;

Remark: The non-collapsing assumption cannot be removed, if we only
assume a negative lower bound on curvature:
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Introduction

However, the non-collapsing assumption can be removed when assuming
non-negative lower bound on certain curvatures:

Cabezas-Rivas,Wilking, 2011

In arbitrary dimension, there exists a complete Ricci flow starting from a
complete manifold with non-negative complex sectional curvature.

Idea: take (Mi , pi )→ (M, p), where Mi is compact and has non-negative
complex sectional curvature. So the same holds for (Mi , gi (t)), t ∈ [0,Ti ],
and limt↗Ti

Volt(Mi ) = 0. By Petrunin’s result,
∫
Bt(pi ,1)

R dvol ≤ C , it
implies Ti ≥ T for all i . Then take a convergent subsequence of
(Mi , gi (t)), t ∈ [0,T ].

Note, in 3d, complex sec ≥ 0 ⇔ sec ≥ 0 ⇒ Ric ≥ 0.

Question: is Ric ≥ 0 in 3d sufficient to run a Ricci flow?
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Introduction

A conjecture by Topping

Given a 3d complete Riemannian manifold (M, g) with Ric ≥ 0, there is a
smooth continuation by Ricci flow.

Main theorem (L, 2020)

Given a 3d complete Riemannian manifold (M, g) with Ric ≥ 0, there is a
smooth Ricci flow (M, g(t)), t ∈ [0,Tmax), starting out from (M, g).
Moreover, if Tmax <∞, then the curvature blows up everywhere when t
goes up to Tmax .

e.g. Tmax <∞: the standard solution, S2 × R; Tmax =∞: Bryant soliton

Strategy to construct the flow:

run a generalized singular Ricci flow M;

show Ric ≥ 0 holds on M;

show that M is actually smooth.
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Part II Singular Ricci flow
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Singular Ricci flow

A Ricci flow spacetime (M, g(t)) is the following:

M is a 4-manifold with boundary.

time function t :M→ [0,T ), time-t-slice Mt , and M0 = ∂M.

∂t is a smooth vector field in M, ∂tt = 1.

g is a metric on ker(dt).

L∂tg = −2Ric(g(t)).

Canonical neighborhood assumption (CNA): Let M be a 3d manifold. We
say that the ε-CNA holds at x ∈ M, if (M, x) is ε-close to a κ-solution at
scale R(x)−1/2.

Yi Lai Producing Ricci flows by singular Ricci flows 12 / 29



Singular Ricci flow

A Ricci flow spacetime (M, g(t)) is the following:

M is a 4-manifold with boundary.

time function t :M→ [0,T ), time-t-slice Mt , and M0 = ∂M.

∂t is a smooth vector field in M, ∂tt = 1.

g is a metric on ker(dt).

L∂tg = −2Ric(g(t)).

Canonical neighborhood assumption (CNA): Let M be a 3d manifold. We
say that the ε-CNA holds at x ∈ M, if (M, x) is ε-close to a κ-solution at
scale R(x)−1/2.

Yi Lai Producing Ricci flows by singular Ricci flows 12 / 29



Singular Ricci flow

ε-neck: A region that is ε-close to S2 × R under rescaling.

strong ε-neck: A spacetime region that is ε-close to (S2 × R, g(t)) for
t ∈ [−1, 0] under rescaling.

gradient estimates: If ε-CNA holds at x , then

|∇R−1/2|(x) ≤ C , |∂tR−1|(x) ≤ C . (0.2)

We say a Ricci flow spacetime M is 0-complete (resp. backward
0-complete) if for any smooth curve γ : [0, s0)→M that satisfies
inf [0,s0) R(γ(s)) <∞ and one of the following, then lims→s0 γ(s) exists:

γ([0, s0)) is contained in a time-slice Mt , and has finite length with
respect to the horizontal metric in Mt , or

γ is the integral curve of −∂t , or ∂t (resp. only −∂t).
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Singular Ricci flow

Theorem (Kleiner,Lott, 2014)

Let (M, g) be a 3d compact manifold, then there exists a singular Ricci
flow starting from M, which is a Ricci flow spacetime that satisfies

M0 = M is compact;

M is 0-complete;

For any x ∈M, t(x) ≤ T , if R(x) ≥ r−2(T ), then the ε-CNA holds
at x .

Theorem: For any x0 ∈ M, suppose x0 survives until t0 > 0, then

N :=
⋃

t=[0,t0]

⋃
A>0

Bt(x0(t),A) (0.3)

is backward 0-complete.
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Singular Ricci flow

Let (M, g(t)) be a singular Ricci flow with normalized initial condition,
x0 ∈M, t(x0) = t0. Suppose |Rm| ≤ r−20 in P0 := P(x0, t0, r0,−r20 ), then

Theorem (Heat kernel)

Then there is a solution u ≥ 0 to (−∂t −∆ + R)u = 0, u is a δ-function
at x0, and Cm = Cm(r0), such that

uRm ≤ Cm in Mt<t0 − P0 (0.4)

Step 1 (construct u): Let Mi →M be a sequence of Ricci flow with
surgeries. Define ui on Mi by integrating with the ordinary heat kernels.
Then ui → u.
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Singular Ricci flow

Step 2 (a vanishing theorem): Studying the solution u ≥ 0 to
(−∂t −∆ + R)u = 0 in a non-compact κ-solution on [0,Tmax).

For example, in a Bryant soliton: If uRm ≤ C , then u ≡ 0.

Step 3 (a semi-local maximum principle): For any x1 with sufficiently large
R, there is x2 with t(x2) ≥ t(x1) such that{

uRm(x2) ≥ (1 + εm)uRm(x1),

u(x2) ≥ (1 + εm)u(x1).
(0.5)

Prove (0.5) by a limiting argument: Suppose it is violated in a sequence
(Mi , xi , ui ), with R(xi )→∞. Then rescale each flow by R(xi ), and
rescale ui such that ui (xi ) = 1. Then

(Mi , xi , ui )→ (g∞(t), x∞, u∞), (0.6)

where g∞(t) is a non-compact κ-solution defined on [0,Tmax). By step 2
we get a contradiction. Prove the theorem by using (0.5) repeatedly.
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Singular Ricci flow

Corollary:
∫
Mt

u dtvol = 1 for all t ∈ [0, t0).

Corollary: Pseudolocality theorem for singular Ricci flows.

Canonical neighborhood theorem

Let (M, g , x0) be a singular Ricci flow, x0 ∈M0. Suppose |Rm| ≤ 1 and
vol(B1(x0, 1)) ≥ A−1 on P(x0, 0; 1, 1). Then there exists r(A) > 0 such
that the ε-CNA holds in B1(x0,A) at scales less than r(A).

Remark: Unlike the case of Ricci flow with surgeries, there is no need to
assume that the initial condition of M is normalized, thanks to the
’zero-surgery scale’ of the singular Ricci flow.
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Part III Generalized singular Ricci flow
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Generalized singular Ricci flow

Theorem (L, 2020)

Let (M, g) be a 3d complete manifold (with possibly unbounded
curvature). Then there exists a generalized singular Ricci flow M
starting from (M, g), which is a Ricci flow spacetime that satisfies:

M0 = M is complete;

M is 0-complete;

For any fixed x0 ∈M, t(x0) = t0, ε-CNA holds on Bt0(x0,A) at scales
(0, r(A)).
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Generalized singular Ricci flow

Proof of the Theorem:

Pick x0 ∈ M, and a sequence of compact manifolds

(Mi , x0i ) −→ (M, x0). (0.7)

Let Mi be singular Ricci flows with Mi ,0 = Mi .

By the pseudolocality theorem,

x ∈ Bt(x0i ,A), t ∈ [0, t(A)] ⇒ |Rm|(x) ≤ C (A).

Take T = t(10). By the canonical neighborhood theorem,

x ∈ Bt(x0i ,A), t ∈ [t(A),T ] ⇒ ε-CNA holds if |Rm| ≥ r(A)−2.

In summary, by decreasing r(A), we have

x ∈ Bt(x0i ,A), t ∈ [0,T ] ⇒ ε-CNA holds if |Rm| ≥ r(A)−2.

Therefore, for any fixed A, Bt(x0i ,A) is uniformly totally bounded.
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Generalized singular Ricci flow

Let Gi = dt2 + gi (t), and di be the metric induced by Gi .

Let Pi (A) :=
⋃

t∈[0,T ) Bt(x0i ,A). Then (Pi (A), di ) is uniformly totally
bounded. So

(Pi (A), di )
GH−−→ (X (A), dA). (0.8)

Let Ni =
⋃

A>0 Pi (A), then

(Ni , di , x0i )
pGH−−−→ (X , d , x0). (0.9)

Let M = {’smooth points’ in X}. By the gradient estimate, there is a
smooth spacetime metric on M, t(M) = [0,T ), and

(Ni , gi (t), x0i )
smoothly−−−−−→ (M, x0). (0.10)
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Generalized singular Ricci flow

By taking T maximal, we can
assume that x0 survives until
its curvature blows up.

Moreover, we can show that
(M, x0) is backward
0-complete. By taking a
’union’ of all such (M, x0) we
get a generalized singular
Ricci flow.
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Part IV Proof of the main theorem
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Proof of the main theorem

Lemma

Let (M, g) be a complete 3-manifold with Ric ≥ 0 (resp. R ≥ 0). Let M
be a generalized singular Ricci flow starting from (M, g). Then Ric ≥ 0
(resp. R ≥ 0) on M.

To show R ≥ 0 is preserved, note

In each Mt , R is positive in the high curvature regions. So Rmin < 0
is achieved at some point.⋃

t∈[0,T )

⋃
A>0 Bt(x0(t),A) is backward 0-complete. It guarantees

lim inf
t↘t0

Rmin(t) ≥ Rmin(t0). (0.11)

Then apply maximum principle.

We can show Ric ≥ 0 in a similar way.
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Proof of the main theorem

Main theorem (L, 2020)

Given a 3d complete Riemannian manifold (M, g) with Ric ≥ 0, there is a
smooth Ricci flow (M, g(t)), t ∈ [0,Tmax), starting out from (M, g).
Moreover, if Tmax <∞, then the curvature blows up everywhere when t
goes up to T .

Proof: Let (M, g(t)) be a generalized singular Ricci flow starting from M.
Let x0 ∈ M. Suppose x0 survives until T > 0. We claim that Mt is
complete for all t ∈ [0,T ].

Suppose not, then for some t,A > 0 there is a minimizing geodesic
γ : [0, 1)→ Bt(x0,A) such that lims→1 R(γ(s)) =∞, and γ(s) is center of
strong ε-necks for all s close to 1.
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Proof of the main theorem

Let X = {p} ∪ Bt(x0,A) be the one-point completion, and take a blow-up
limit of X at p,

λX
GH−−→ X∞, as λ→∞. (0.12)

Then by Ric ≥ 0, we can show X∞ is a smooth cone.

Since for any x ∈ X∞, x is the center of a strong 2ε-neck, X∞ is flat.

However, by the gradient estimate on X ,

|∇R−
1
2 | ≤ C ⇒ R−

1
2 (x) ≤ C d(x , p). (0.13)

So X∞ is not flat, a contradiction. So Mt is complete for all t ∈ [0,T ].

Since Ric ≥ 0, we have dt(x , x0) ≤ d0(x , x0) for any x ∈ M. So M
survives until T , and M × [0,T ] ⊂M is a smooth Ricci flow.
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Thanks for your listening!
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