
Recent Progress on Error Bounds for
Structured Convex Programming

Zirui Zhou

Joint work with Anthony Man-Cho So

Department of Systems Engineering & Engineering Management

The Chinese University of Hong Kong

September 3, 2014, Beijing



Outline

• overview of error bound

• associated solution mapping

• upper Lipschitzian continuity of multifunctions

• a sufficient condition for error bound

• strongly convex functions

• convex functions with polyhedral epigraph

• group-lasso regularizer

• conclusion

Error Bounds for Structured Convex Programming 1



Structured Convex Programming

Consider the structured problem:

min
x∈Rn

F (x) := f(x) + τP (x),

τ > 0 given, optimal value v∗, optimal solution set X .

• f : convex and continuously differentiable;

• P : lower semicontinuous and convex, like

– indicator function of a non-empty closed convex set,
– various regularizers in application, i.e., `1, group-lasso.
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Residual Function

Define a residual function R : Rn → Rn,

R(x) := arg min
d∈Rn

{
`F (x+ d;x) +

1

2
‖d‖2

}
,

where ‖ · ‖ is the usual vector 2-norm and `F is the linearization of F ,

`F (y;x) := f(x) + 〈∇f(x), y − x〉+ τP (y).

• x ∈ X ⇔ ‖R(x)‖ = 0,

• easy to compute.
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Residual Function: Examples

• P (x) ≡ 0, R(x) = −∇f(x);

• P (x) = ID(x), R(x) = x− [x−∇f(x)]+D;

• P (x) = ‖x‖1, R(x) = x− sτ(x−∇f(x));

where [ · ]+D is the projection operator, sτ(·) is the vector shrinkage operator.

Let v = sτ(x),

vi =

 xi − τ, xi ≥ τ ;
0, −τ < xi < τ ;
xi + τ, xi ≤ −τ.
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Error Bound: Definition

• Forward error: dist(x,X ).

• Backward error: ‖R(x)‖.

Error Bound Condition: there exists κ > 0 and a closed set U ⊆ Rn, such that

dist(x,X ) ≤ κ‖R(x)‖, whenever x ∈ U .

• Global error bound: U = Rn.

• Local error bound: U is the closure of a neighbourhood of X .
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What If Error Bound Holds

• Stopping criterion: estimate dist(xk,X ),

dist(xk,X ) ≤ κ‖R(xk)‖.

• Linear convergence: for example, under mild assumptions,

‖R(xk)‖ ≤ κ1‖xk+1 − xk‖, k = 1, 2, . . . ,

This gives a key step for linear convergence,

dist(xk,X ) ≤ κ‖R(xk)‖ ≤ κκ1‖xk+1 − xk‖,

– global error bound ⇒ global linear rate;
– local error bound ⇒ asymptotic linear rate.
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Conditions for Error Bounds: Existing Results

(a) f is strongly convex [Pang’87];

(b) f(x) = h(Ax), P (x) is of polyhedral epigraph [Luo-Tseng’92];

(c) f(x) = h(Ax), P (x) is the group-lasso or sparse group-lasso regularizer
[Tseng’09, Zhang-Jiang-Luo’13].

Notations in case (b) and (c),

• A is any matrix;

• h is strongly (strictly) convex differentiable function with ∇h Lipschitz
continuous;

• group-lasso: for x ∈ Rn, P (x) =
∑
J∈J ωJ‖xJ‖2. J is a non-overlapping

partition of {1, . . . , n}.
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Assumptions

Throughout, for the structured problem

min
x∈Rn

F (x) := f(x) + τP (x), (1)

we make the following assumptions:

• f takes the form
f(x) = h(Ax),

where A ∈ Rm×n is a matrix, h : Rm → R is σ-strongly convex and ∇h is
L-Lipschitz continuous;

• X is non-empty.
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Optimal Solution Set

First-order optimality condition,

X = {x ∈ Rn | 0 ∈ ∇f(x) + τ∂P (x)} .

Since h is strictly convex, we have

• there exists ȳ ∈ Rm such that Ax = ȳ, ∀x ∈ X ;

• ∇f(x) = AT∇h(Ax), by letting ḡ = AT∇h(ȳ), then ∇f(x) = ḡ, ∀x ∈ X .

Thus, by assuming ȳ and ḡ are known, X has the following characterization,

X = {x ∈ Rn | Ax = ȳ, −ḡ ∈ τ∂P (x)} .
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Solution Mapping

• Let Σ : Rn × Rm ⇒ Rn be a multifunction (set-valued function) defined as

Σ(t, e) := {x ∈ Rn | Ax = t, e ∈ ∂P (x)} , ∀t ∈ Rm, e ∈ Rn.

We say Σ is the solution mapping associated with (1).

• Relationship with optimal solution set:

X = Σ(ȳ,−ḡ/τ) .
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Upper Lipschitzian Continuity

For any solution mapping Σ and any (t̄, ē) ∈ Rm × Rn, we say

• Σ is globally upper Lipschitzian continuous (global-ULC) at (t̄, ē) with modulus
θ, if

Σ(t, e) ⊆ Σ(t̄, ē) + θ‖(t, e)− (t̄, ē)‖B, ∀(t, e) ∈ Rm × Rn.

• Σ is locally upper Lipschitzian continuous (local-ULC) at (t̄, ē) with modulus θ,
if there exists a constant δ > 0 such that

Σ(t, e) ⊆ Σ(t̄, ē) + θ‖(t, e)− (t̄, ē)‖B, whenever ‖(t, e)− (t̄, ē)‖ ≤ δ.

Here B is the unit ball of Rm × Rn.
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A Sufficient Condition for Error Bound

Proposition. Let Σ be the associated solution mapping of (1), then

(a) Σ is global-ULC at (ȳ,−ḡ/τ) =⇒ global error bound holds.

(b) Σ is local-ULC at (ȳ,−ḡ/τ) =⇒ local error bound holds.

Remark. In case (b), the strongly convex assumption on h can be relaxed to
strictly convex, i.e., strongly convex on any compact subset of domh.
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Proof of Global Error Bound

For any x ∈ Rn, by optimality condition of R(x),

0 ∈ ∇f(x) +R(x) + τ∂P (x+R(x)).

This gives us

x+R(x) ∈ Σ

(
A(x+R(x)), −∇f(x) +R(x)

τ

)
.

Since Σ is global-ULC at (ȳ,−ḡ/τ) and Σ(ȳ,−ḡ/τ) = X .

dist(x+R(x),X ) ≤ θ

∥∥∥∥(A(x+R(x)),−∇f(x) +R(x)

τ

)
− (ȳ,−ḡ/τ)

∥∥∥∥
≤ θ̃ (‖Ax− ȳ‖+ ‖R(x)‖) .

The second inequality utilizes Lipschitz continuity of ∇f .
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Suppose x̄ is the projection of x onto X , and x̄R is the projection of x+R(x).

dist(x,X ) ≤ ‖x− x̄R‖ = ‖x+R(x)− x̄R −R(x)‖
≤ dist(x+R(x),X ) + ‖R(x)‖.

Thus by choosing proper constant κ0, we obtain

dist(x,X ) ≤ κ0 (‖Ax− ȳ‖+ ‖R(x)‖) .

Using the inequality that for any a, b ∈ R, (a+ b)2 ≤ 2(a2 + b2), we have

dist2(x,X ) ≤ 2κ20(‖Ax− ȳ‖2 + ‖R(x)‖2). (2)

Since h is strongly convex with factor σ,

σ‖Ax− ȳ‖2 ≤ 〈∇h(Ax)−∇h(ȳ), Ax− ȳ〉 = 〈∇f(x)− ḡ, x− x̄〉. (3)

Using Fermat’s rule for R(x) and standard arguments, there exists constant κ1 > 0
such that

〈∇f(x)− ḡ, x− x̄〉 ≤ κ1‖x− x̄‖ · ‖R(x)‖.
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Combining the above equality with (3) and (2), there exists κ2 > 0 satisfying

dist2(x,X ) ≤ κ2(‖x− x̄‖ · ‖R(x)‖+ ‖R(x)‖2).

Solving this quadratic inequality, we obtain a constant κ such that

dist(x,X ) ≤ κ‖R(x)‖.

This establishes the global error bound. �
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ULC Property of Solution Mapping

Solution mapping:

Σ(t, e) = {x ∈ Rn | Ax = t, e ∈ ∂P (x)} , ∀t ∈ Rm, e ∈ Rn.

Next, we will study the ULC property of Σ for the following three cases.

• f is strongly convex and P is any lower-semicontinuous convex function;

• f is non-strongly convex and P is of polyhedral epigraph;

• f is non-strongly convex and P is group-lasso regularizer.
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f Strongly Convex

• A is surjective, and has inverse A−1.

• For any (t, e) ∈ Rm × Rn,

Σ(t, e) = {A−1(t)}, or Σ(t, e) = ∅.

• If Σ is non-empty at (t̄, ē), then

Σ(t, e) ⊆ Σ(t̄, ē) + ‖A−1‖ · ‖t− t̄‖B, ∀(t, e) ∈ Rm × Rn.

So in this case, Σ is global-ULC at (t̄, ē) and global error bound holds.
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f Non-Strongly Convex and P Polyhedral

• P is of polyhedral epigraph.

epiP = {(z, w) ∈ Rn × R | Czz + Cww ≤ d} ,

where Cw, d ∈ Rl, Cz ∈ Rl × Rn.

• Proposition: for any e ∈ Rn, e ∈ ∂P (x) if and only if there exists s ∈ R such
that (x, s) is the optimal solution of the following LP:

min −eTz + w
s.t. Czz + Cww ≤ d

(4)

Proof: Indeed, if e ∈ ∂P (x), by definition of subgradient,

P (z) ≥ P (x) + eT (z − x), ∀z ∈ domP.

Upon rearranging,

P (x)− eTx ≤ P (z)− eTz ≤ w − eTz, ∀(z, w) ∈ epiP.
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This implies (x, P (x)) is an optimal solution of (4).

On the other hand, if (x, s) is an optimal solution, then s = P (x). If not, since
(x, s), (x, P (x)) ∈ epiP , P (x) < s and −eTx+ P (x) < −eTx+ s. So

P (x)− eTx ≤ P (z)− eTz, ∀z ∈ domP.

By definition of subgradient, e ∈ ∂P (x). �

• Optimality Condition for LP: e ∈ ∂P (x) if and only if there exist s ∈ R, γ ∈ Rl
such that (x, s, γ) is the solution of the following system,

S(e) :=

(z, w, λ)

∣∣∣∣∣∣∣∣∣∣
C∗z (λ) = e,

1 + 〈Cw, λ〉 = 0,
λ ≥ 0,

Czz + Cw · w ≤ d,
〈λ,Czz + Cw · w − d〉 = 0.


• The solution mapping Σ can be expressed as

Σ(t, e) =
{
x ∈ Rn | Ax = t, (x, s, γ) ∈ S(e) for some s ∈ R, γ ∈ Rl

}
.
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Polyhedral Multifunction

• A multifunction Γ : X ⇒ Y is said to be a polyhedral multifunction if Graph(Γ)
is a finite union of polyhedral sets, where

Graph(Γ) := {(x, y) ∈ X × Y | y ∈ Γ(x)}.

• Polyhedral multifunctions are local-ULC [Robinson’81].

• Σ is a polyhedral multifunction and thus Σ is local-ULC.

So in this case, we have local error bound.
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f Non-Strongly Convex and P Group-Lasso Regularizer

• Group-lasso regularizer:

P (x) =
∑
J∈J

ωJ‖xJ‖2,

• Solution mapping:

Σ(t, e) =

{
x ∈ Rn | Ax = t, e ∈

∑
J∈J

ωJ∂‖xJ‖2

}
.

• Theorem. For any (t̄, ē) ∈ Rm × Rn, if Σ is non-empty and bounded at (t̄, ē),
then Σ is locally upper Lipschitzian continuous at (t̄, ē).

So in this case, we have local error bound.
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Proof of Theorem

For simplicity, we consider

Σ(t, e) = {x ∈ Rn | Ax = t, e ∈ ∂‖x‖2} .

By the definition of subgradient,

∂‖z‖2 =

{
B(0, 1) if z = 0;
z/‖z‖2 otherwise.

• If ‖e‖2 > 1, Σ(t, e) is empty;

• if ‖e‖2 < 1, Σ(t, e), if not empty, equals {0};

• if ‖e‖2 = 1, Σ(t, e), if not empty, has the expression

Σ(t, e) = {x ∈ Rn | Ax = t, x is a non-negative multiple of e}.
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Suppose (t̄, ē) satisfies that Σ(t̄, ē) is non-empty and bounded. So ‖ē‖2 ≤ 1.
Consider the following two cases: (a) ‖ē‖2 < 1; (b) ‖ē‖2 = 1.

• (a) In this case Σ(t̄, ē) = {0}. Since ‖ē‖2 < 1, there exists δa > 0 satisfying
‖e‖2 < 1 whenever ‖e− ē‖2 ≤ δa. So

Σ(t, e) = ∅ or {0}, whenever ‖(t, e)− (t̄, ē)‖2 ≤ δa.

It then satisfies

Σ(t, e) ⊆ Σ(t̄, ē) + θ‖(t, e)− (t̄, ē)‖2B, whenever ‖(t, e)− (t̄, ē)‖2 ≤ δa.

By definition, Σ is local-ULC at (t̄, ē) if (t̄, ē) is of case (a).
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• (b) In this case,

Σ(t̄, ē) = {x ∈ Rn | Ax = t̄, x is a non-negative multiple of ē}.

Let [ē, Ē] be an orthonormal basis of Rn. Then

x is a non-negative multiple of ē ⇐⇒ ēTx ≥ 0, ĒTx = 0.

Thus we have the representation of Σ as

Σ(t̄, ē) = {x ∈ Rn | Ax = t̄, ēTx ≥ 0, ĒTx = 0}.

This implies Σ(t̄, ē) is a polyhedral set.

Applying the well-known Hoffman’s bound, there exists κ > 0,

dist(x,Σ(t̄, ē)) ≤ κ
(
‖Ax− t̄‖2 + [ēTx]− + ‖ĒTx‖2

)
, ∀x ∈ Rn.

For any scalar z, we denote [z]− = max{0,−z}.
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Now consider x ∈ Σ(t, e) with (t, e) 6= (t̄, ē).

– If ‖e‖2 < 1, then x = 0 and Ax = t. We obtain

dist(x,Σ(t̄, ē)) ≤ κ‖t− t̄‖2 ≤ κ(‖t− t̄‖2 + ‖e− ē‖2), ∀x ∈ Σ(t, e). (5)

– If ‖e‖2 = 1, then Ax = t and x is a non-negative multiple of e.

Fact. There exists a matrix E such that [e, E] is an orthonormal basis of Rn
and ‖Ei − Ēi‖2 ≤ ‖e− ē‖2, i = 1, . . . , n− 1. Ei is the i-th column of E.

x is a non-negative multiple of e⇐⇒ eTx ≥ 0, ETx = 0.

Thus for any x ∈ Σ(t, e),

dist(x,Σ(t̄, ē)) ≤ κ(‖t− t̄‖2 + [ēTx]− + ‖ĒTx‖2)
≤ κ(‖t− t̄‖2 + [eTx]− + [(ē− e)Tx]− + ‖ETx‖2 + ‖(Ē − E)Tx‖2)
≤ κ

(
‖t− t̄‖2 + ‖ē− e‖2‖x‖2 +

∑n
i=1 ‖Ēi − Ei‖2‖x‖2

)
≤ κ(‖t− t̄‖2 + n‖x‖2‖ē− e‖2)
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Fact. If Σ(t̄, ē) is bounded, there exists δb > 0 such that Σ(t, e) is bounded
whenever ‖(t, e)− (t̄, ē)‖2 ≤ δb.

So there exists R > 0 such that for any x ∈ Σ(t, e) with ‖(t, e)−(t̄, ē)‖2 ≤ δb,
‖x‖2 ≤ R. Using the above relationship, we obtain that for any (t, e) satisfying
‖(t, e)− (t̄, ē)‖2 ≤ δb and ‖e‖2 = 1,

dist(x,Σ(t̄, ē)) ≤ κ(1 + nR)(‖t− t̄‖2 + ‖e− ē‖2), ∀x ∈ Σ(t, e). (6)

Combining (5) and (6), by letting θ = κ(1 + nR),

Σ(t, e) ⊆ Σ(t̄, ē) + θ‖(t, e)− (t̄, ē)‖2B, whenever ‖(t, e)− (t̄, ē)‖2 ≤ δb.

So Σ is local-ULC at (t̄, ē) if (t̄, ē) is of case (b).

Together with case (a), Σ is local-ULC at (t̄, ē) is Σ is non-empty and bounded
at (t̄, ē). �
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Conclusions and Future Work

Contributions:

• based on the ULC property of the associated solution mapping, we give a
sufficient condition for error bound and unifies all the existing results.

• we give an alternative approach to error bound for group-lasso regularized
optimization.

Some of the future directions:

• study the solution mapping for more cases, i.e., mixed norm, nuclear norm.

• error bounds beyond current assumptions.

Error Bounds for Structured Convex Programming 27


