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Structured Convex Programming

Consider the structured problem:

min F(z) := f(z) + 7P(z),

T > 0 given, optimal value v*, optimal solution set X.

e f: convex and continuously differentiable;

e P: lower semicontinuous and convex, like

— indicator function of a non-empty closed convex set,
— various regularizers in application, i.e., /1, group-lasso.
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Residual Function

Define a residual function R : R"™ — R",

1
R(e) = arg iy { (o + ) + 1l |

where || - || is the usual vector 2-norm and ¢ is the linearization of F,
Le(y;x) = flx) + (Vf(z),y —z) + 7P(y).
e r € X & ||R(x)]| =0,

e casy to compute.
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Residual Function: Examples

e Plx)=0, R(zx)=-Vf(x);
o P(z) =Ip(z), R(z)=x—[x—Vf(z)l}
o P(x)=|[z[, R(x)=z—s;(z—V[f(x)),

where [ - |1 is the projection operator, s, (-) is the vector shrinkage operator.

Let v = s-(x),
Ti— T, Tj=>T,
v; =1 0, —7 < x; < T;
T, +7, x;; < —T.
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Error Bound: Definition

e Forward error: dist(z, X).

e Backward error: ||R(x)]|].

Error Bound Condition: there exists x > 0 and a closed set 4 C R", such that

dist(x, X) < k||R(z)||, whenever z € U.

e Global error bound: U = R"™.

e Local error bound: U is the closure of a neighbourhood of X.
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What If Error Bound Holds

e Stopping criterion: estimate dist(z", X),

dist(z", X) < k|| R(z")|].

e Linear convergence: for example, under mild assumptions,
|R(@")|| < mallz*Ft = 2%, k=1,2,...,
This gives a key step for linear convergence,
dist(z", X) < k||R(z")|| < kry |2t — 28],

— global error bound = global linear rate;
— local error bound = asymptotic linear rate.
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Conditions for Error Bounds: Existing Results

(a) f is strongly convex [Pang’'87];
(b) f(x) = h(Ax), P(x) is of polyhedral epigraph [Luo-Tseng’92];

(c) f(z) = h(Ax), P(x) is the group-lasso or sparse group-lasso regularizer
[Tseng’09, Zhang-Jiang-Luo’13].

Notations in case (b) and (c),
e A is any matrix;

e h is strongly (strictly) convex differentiable function with Vh Lipschitz
continuous;

e group-lasso: for z € R", P(x) = » ;. wyllzsll2. J is a non-overlapping
partition of {1,...,n}.
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Assumptions

Throughout, for the structured problem

min F(z) == f(z) + 7P(2), (1)

we make the following assumptions:

e f takes the form
fz) = h(Az),
where A € R™*™ is a matrix, h : R™ — R is o-strongly convex and Vh is
L-Lipschitz continuous;

e X is non-empty.
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Optimal Solution Set
First-order optimality condition,
X={zxeR"|0eVf(x)+71IP(x)}.
Since h is strictly convex, we have
e there exists §y € R such that Az =y, Ve € A ;

e Vf(x) = ATVh(Ax), by letting g = A'Vh(j), then Vf(z) =g, Vo € X.

Thus, by assuming y and g are known, X" has the following characterization,

X={xeR"| Az =9y, —g € 10P(x)}.
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Solution Mapping

o Let X : R"™ x R™ == R" be a multifunction (set-valued function) defined as
Y(t,e) :={x e R"| Az =t, e OP(x)}, VteR™ eecR"
We say ¥ is the solution mapping associated with (1).

e Relationship with optimal solution set:

X = E(ga _g/T) :
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Upper Lipschitzian Continuity
For any solution mapping ¥ and any (¢,é) € R™ x R", we say

e 3 is globally upper Lipschitzian continuous (global-ULC) at (¢, €) with modulus
0, if
X(t,e) CX(t,e) +0|(t,e) — (¢, €)[|B, V(i e) e R™ x R™

e 3 is locally upper Lipschitzian continuous (local-ULC) at (¢, €) with modulus 6,
if there exists a constant 0 > 0 such that

Y(t,e) C X(t,e)+0||(t,e) — (t,e)||B, whenever ||(t,e) — (t,€)] < 0.

Here BB is the unit ball of R™ x R™.
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A Sufficient Condition for Error Bound

Proposition. Let X be the associated solution mapping of (1), then

(a) X is global-ULC at (y,—g/7) = global error bound holds.

(b) % is local-ULC at (y,—g/T) = local error bound holds.

Remark. In case (b), the strongly convex assumption on h can be relaxed to
strictly convex, i.e., strongly convex on any compact subset of domh.
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Proof of Global Error Bound
For any x € R™, by optimality condition of R(x),
0 € Vf(x)+ R(x) + T70P(xz + R(x)).

This gives us

r+ R(x) € X (A(a: + R(x)), _Vf(a:);l— R(x)) :

Since X is global-ULC at (y, —g/7) and X(y, —g/7) = X.

Vi) + R(z)

T

dist(z + R(x),X) < 9H<A(:1:—|—R(x)),— )_(97—9/7)
< 0(|Az =gl + |R(=)])) .

The second inequality utilizes Lipschitz continuity of V f.
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Suppose T is the projection of & onto X, and ' is the projection of z + R(x).

dist(z,X) < |z—2z% =|z+ R(z) —z" — R(x)||
< dist(z + R(z),X) + || R(x)||.

Thus by choosing proper constant kg, we obtain
dist(z, X) < ko ([|Az — g[| + | R(z)]])
Using the inequality that for any a,b € R, (a + b)? < 2(a* + b?), we have
dist®(z, X) < 2r5 (]| Az — gl + | R(2)[). (2)
Since h is strongly convex with factor o,
ol[Az — g||* < (Vh(Az) — VM(G), Az — §) = (Vf(z) — g2 — 7).  (3)

Using Fermat’s rule for R(x) and standard arguments, there exists constant x; > 0
such that
(Vf(z) =g, —7) < kalle — 2| - [[R(=)]|.
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Combining the above equality with (3) and (2), there exists k5 > 0 satisfying
dist®(z, X) < ra([lx — 2| - | R(@)]| + [|R(x)[*).
Solving this quadratic inequality, we obtain a constant k such that
dist(x, X) < k|| R(z)||.

This establishes the global error bound. []
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ULC Property of Solution Mapping

Solution mapping:

Y(t,e) ={xeR"| Ax =t, ec OP(x)}, VteR™ eecR".
Next, we will study the ULC property of X for the following three cases.
e f is strongly convex and P is any lower-semicontinuous convex function;

e f is non-strongly convex and P is of polyhedral epigraph;

e f is non-strongly convex and P is group-lasso regularizer.
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f Strongly Convex

e A is surjective, and has inverse A™1.
e For any (t,e) € R™ x R",

N(t,e) = {At)}, or X(t,e) =0.

e If 3 is non-empty at (¢, €), then

S(t,e) C X e) + |A7Y| - |t — 7B, V(te) € R™ x R™

So in this case, ¥ is global-ULC at (¢,€) and global error bound holds.
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f Non-Strongly Convex and P Polyhedral
e P is of polyhedral epigraph.
epiP ={(z,w) e R" xR | C,z 4+ C,w < d},
where C,,,d € R}, C, € R! x R"™.

e Proposition: for any e € R", e € OP(x) if and only if there exists s € R such
that (z, s) is the optimal solution of the following LP:

min —elz 4+ w

st. CLz+CuLw <d (4)
Proof: Indeed, if e € OP(x), by definition of subgradient,
P(z) > P(z)+ el (2 —2), Vz&domP.
Upon rearranging,

Px)—elz <P()—elz<w—ez, V(z,w) € epiP.
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This implies (x, P(x)) is an optimal solution of (4).

On the other hand, if (z, s) is an optimal solution, then s = P(z). If not, since
(z,8), (z, P(x)) € epiP, P(x) < s and —elz + P(z) < —el'z + 5. So

P(x) —elz < P(2) —e'z, Vzé€ domP.
By definition of subgradient, e € dP(x). ]

e Optimality Condition for LP: e € OP(z) if and only if there exist s € R,y € R!
such that (z, s, ) is the solution of the following system,

( ()\) 7 )
+ (Cs >\>

S(e) := (z,w, )
sz—l—Cw-w
(N, Coz+Cy-w—d)

ATV

\

e The solution mapping X can be expressed as

S(t,e)={x e R" | Az =t, (x,s,7) € S(e) for some s € R,y € R'}.
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Polyhedral Multifunction

e A multifunction T' : X = Y is said to be a polyhedral multifunction if Graph(I')
Is a finite union of polyhedral sets, where

Graph(l') :={(z,y) e X x YV |y € I'(z)}.

e Polyhedral multifunctions are local-ULC [Robinson’81].

e > is a polyhedral multifunction and thus X is local-ULC.

So in this case, we have local error bound.
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f Non-Strongly Convex and P Group-Lasso Regularizer

e Group-lasso regularizer:
P(x) =)  wyllzsllo,
JeJ
e Solution mapping:

Y(t,e) = {:U ceR" | Az =t, e€ Z wjﬁazjg}.

JeJ

e Theorem. For any (t,e) € R™ x R", if ¥ is non-empty and bounded at (¢, €),
then X is locally upper Lipschitzian continuous at (¢, €).

So in this case, we have local error bound.
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Proof of Theorem

For simplicity, we consider

Yi(t,e)={x e R" | Ax =t, e € J||z]|2} .

By the definition of subgradient,

o If

o if

B(0,1) if z=0;
auzuzz{ (0,1)

z/||z||l2 otherwise.

o > 1, 3(t,e) is empty;
» < 1, X(t,e), if not empty, equals {0};

o =1, 3(t, e), if not empty, has the expression

Y(t,e) ={x € R" | Ax =t,x is a non-negative multiple of e}.

Error Bounds for Structured Convex Programming
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Suppose (t,€) satisfies that X (¢,€) is non-empty and bounded. So |||l < 1.
Consider the following two cases: (a) |le]|2 < 1; (b) ||le]|2 = 1.

e (a) In this case X(¢,e) = {0}. Since ||€|l2 < 1, there exists §, > 0 satisfying
le|l2 < 1 whenever |le — é||2 < d4. So

Y(t,e) =0 or {0}, whenever ||(t,e) — (t,€)||2 < dq.
It then satisfies
Y(t,e) C X(t,e) +0|(t,e) — (t,e)||[2B, whenever ||(t,e) — (t,€)||2 < dq.

By definition, 3 is local-ULC at (¢, €) if (¢,€) is of case (a).
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e (b) In this case,
Y(t,e) = {x € R™" | Az = t,x is a non-negative multiple of e}.
Let [, E] be an orthonormal basis of R™. Then
T is a non-negative multiple of ¢ <= &'z >0,E'z=0.
Thus we have the representation of X as

N(t,e)={xeR" | Az =t etz >0,E' 2 = 0}.
This implies X(¢, €) is a polyhedral set.
Applying the well-known Hoffman’s bound, there exists x > 0,
dist(z,X(¢,€)) < k (||Az — |2 + lelz]” + ||ETxH2) , Vo eR"

For any scalar z, we denote [2]” = max{0, —z}.
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Now consider = € Y(t, e) with (t,e) # (¢, €).
— If |le||l2 < 1, then x = 0 and Az = t. We obtain

dist(x, %(¢,€)) < wllt —tll2 < w(([t —tll2 + lle —€ll2), Ve eX(te). (5)
— If |le||]2 = 1, then Ax =t and x is a non-negative multiple of e.

Fact. There exists a matrix E such that |e, E] is an orthonormal basis of R"
and |E; — Ei|ls < |le —é€l|2,i =1,...,n— 1. Ej; is the i-th column of E.

= is a non-negative multiple of e <= el2z >0, E'z =0.
Thus for any x € X(t, ¢e),

dist(z, X(¢, €)) (It — tll2 + [eTz]” + |[ETz||2)
(It = tll2 + [e"2]™ + [(e — )] ™ + [|ET 22 + (B — E)"zl2)
(It =tz + lle = ell2ll@ll2 + 325y [1E: — Eill2l2)

K[t =tz + nllzll2lle — ell2)

IAIA TN A
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Fact. If X(¢,é) is bounded, there exists d, > 0 such that X(¢,e) is bounded
whenever ||(t,e) — (t,€)]l2 < dy.

So there exists R > 0 such that for any x € X(¢, e) with ||(¢,e) — (¢, €)||2 < 0s,
|x||]2 < R. Using the above relationship, we obtain that for any (t, e) satisfying
I(t,e) = (#,€)[l2 < dp and |lefl2 =1,

dist(z,X(t,€)) < k(1 +nR)(||t — t||2+ |le — €|l2), Vz e X(t,e). (6)
Combining (5) and (6), by letting § = k(1 +nR),
Y.(t,e) C X(t,e) +0|(t,e) — (t,€)||2B, whenever ||(t,e) — (¢, €)|l2 < .

So X is local-ULC at (¢,€) if (¢,¢€) is of case (b).

Together with case (a), X is local-ULC at (¢, €) is ¥ is non-empty and bounded
at (t,e). ]
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Conclusions and Future Work
Contributions:

e based on the ULC property of the associated solution mapping, we give a
sufficient condition for error bound and unifies all the existing results.

e we give an alternative approach to error bound for group-lasso regularized
optimization.

Some of the future directions:

e study the solution mapping for more cases, i.e., mixed norm, nuclear norm.

e error bounds beyond current assumptions.
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