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Problem

◮ We consider the following block-structured problem

minimize f(x) := g(x1, x2, · · · , xK) +

K
∑

k=1

hk(xk)

subject to Ex := E1x1 + E2x2 + · · ·+ EKxK = q

xk ∈ Xk, k = 1, 2, ...,K,

(1.1)

◮ x := (xT1 , ..., x
T
K)T ∈ ℜn is a partition of the optimization

variable x, X =
∏K

k=1Xk is the feasible set for x

◮ g(·): smooth, possibly nonconvex; coupling all variables

◮ hk(·): convex, possibly nonsmooth

◮ E := (E1, E2, ..., EK) ∈ ℜm×n is a partition of E
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Applications

Lots of emerging applications

◮ Compressive Sensing Estimate a sparse vector x by solving
the following (K = 2) [Candes 08]:

minimize ‖z‖2 + λ‖x‖1
subject to Ex+ z = q,

where E is a (fat) observation matrix and q ≈ Ex is a noisy
observation vector

◮ If we require x ≥ 0 then we obtain a three block (K = 3)
convex separable optimization problem
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Applications (cont.)

◮ Stable Robust PCA Given a noise-corrupted observation
matrix M ∈ ℜm×n, separate a low rank matrix L and a sparse
matrix S [Zhou 10]

minimize ‖L‖∗ + ρ‖S‖1 + λ‖Z‖2F
subject to L+ S + Z = M

◮ ‖ · ‖∗: the matrix nuclear norm

◮ ‖ · ‖1 and ‖ · ‖F denote the ℓ1 and the Frobenius norm of a
matrix

◮ Z denotes the noise matrix
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Applications: The BP Problem

◮ Consider the basis pursuit (BP) problem [Chen et al 98]

min
x

‖x‖1 s.t. Ex = q, x ∈ X.

◮ Partition x by x = [xT1 , · · · , xTK ]T where xk ∈ ℜnk

◮ Partition E accordingly

◮ The BP problem becomes a K block problem

min
x

K
∑

k=1

‖xk‖1 s.t.
K
∑

k=1

Ekxk = q, xk ∈ Xk, ∀ k.

5 / 57



Introduction The ADMM Algorithm The Main Result

Applications: Wireless Networking
◮ Consider a network with K secondary users (SUs), L primary

users (PUs) and a secondary BS (SBS)
◮ sk: user k’s transmit power; rk the channel between user k

and the SBS; Pk SU k’s total power budget
◮ gkℓ: the channel between the kth SU to the ℓth PU

Figure: Illustration of the CR network.
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Applications: Wireless Networking

◮ Objective maximize the SUs’ throughput, subject to limited
interference to PUs:

max
{sk}

log

(

1 +

K
∑

k=1

|rk|2sk

)

s.t. 0 ≤ sk ≤ Pk,

K
∑

k=1

|gkℓ|2sk ≤ Iℓ, ∀ ℓ, k,

◮ Again in the form of (1.1)

◮ Similar formulation for systems with multiple channels,
multiple transmit/receive antennas
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Application: DR in Smart Grid Systems

◮ Utility company bids the electricity from the power market

◮ Total cost

Bidding cost in a wholesale day-ahead market
Bidding cost in real-time market

◮ The demand response (DR) problem [Alizadeh et al 12]

Utility have control over the power consumption of users’
appliances (e.g., controlling the charging rate of electrical
vehicles)
Objective: minimize the total cost
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Application: DR in Smart Grid Systems

◮ K customers, L periods

◮ {pℓ}Lℓ=1: the bids in a day-ahead market for a period L

◮ xk ∈ ℜnk : control variables for the appliances of customer k

◮ Objective: Minimize the bidding cost + power imbalance
cost, by optimizing the bids and controlling the appliances
[Chang et al 12]

min
{xk},p,z

Cp(z) + Cs

(

z+ p−
K
∑

k=1

Ψkxk

)

+ Cd(p)

s.t.

K
∑

k=1

Ψkxk − p− z ≤ 0, z ≥ 0, p ≥ 0, xk ∈ Xk, ∀ k.
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Challenges

◮ For huge scale (BIG data) applications, efficient algorithms
needed

◮ Many existing first-order algorithms do not apply
◮ The block coordinate descent algorithm (BCD) cannot deal

with linear coupling constraints [Bertsekas 99]
◮ The block successive upper-bound minimization (BSUM)

method cannot apply either [Razaviyayn-Hong-Luo 13]
◮ The alternating direction method of multipliers (ADMM) only

works for convex problem with 2 blocks of variables and
separable objective [Boyd et al 11][Chen et al 13]

◮ General purpose algorithms can be very slow
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Agenda

◮ The ADMM for multi-block structured convex optimization

The main steps of the algorithm
Rate of convergence analysis

◮ The BSUM-M for multi-block structured convex optimization

The main steps of the algorithm
Convergence analysis

◮ The flexible ADMM for structured nonconvex optimization

The main steps of the algorithm
Convergence analysis

◮ Conclusions
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The ADMM Algorithm

◮ The augmented Lagrangian function for problem (1.1) is

L(x; y) = f(x) + 〈y, q − Ex〉+ ρ

2
‖q −Ex‖2, (1.2)

where ρ ≥ 0 is a constant

◮ The primal problem is given by

d(y) = min
x

f(x) + 〈y, q − Ex〉+ ρ

2
‖q − Ex‖2 (1.3)

◮ The dual problem is

d∗ = max
y

d(y), (1.4)

d∗ equals to the optimal solution of (1.1) under mild
conditions
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The ADMM Algorithm

Alternating Direction Method of Multipliers (ADMM)

At each iteration r ≥ 1, first update the primal variable blocks in
the Gauss-Seidel fashion and then update the dual multiplier:


















xr+1
k = arg min

xk∈Xk

L(xr+1
1 , ..., xr+1

k−1, xk, x
r
k+1, ..., x

r
K ; yr), ∀ k

yr+1 = yr + α(q − Exr+1) = yr + α

(

q −
K
∑

k=1

Ekx
r+1
k

)

,

where α > 0 is the step size for the dual update.

◮ Inexact primal minimization ⇒ q − Ext+1 is no longer the
dual gradient!

◮ Dual ascent property d(yt+1) ≥ d(yt) is lost
◮ Consider α = 0, or α ≈ 0...
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The ADMM Algorithm (cont.)

◮ The Alternating Direction Method of Multipliers (ADMM)
optimizes the augmented Lagrangian function one block
variable at each time [Boyd 11, Bertsekas 10]

◮ Recently found lots of applications in large-scale structured
optimization; see [Boyd 11] for a survey

◮ Highly efficient, especially when the per-block subproblems are
easy to solve (with closed-form solution)

◮ Used widely (wildly?), even to nonconvex problems, with no
guarantee of convergence
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Known Convergence Results and Challenges

◮ K = 1: reduces to the conventional dual ascent algorithm
[Bertsekas 10]; The convergence and rate of convergence has
been analyzed in [Luo 93, Tseng 87]

◮ K = 2: a special case of Douglas-Rachford splitting method,
and its convergence is studied in [Douglas 56, Eckstein 89]

◮ K = 2: the rate of convergence has recently been studied in
[Deng 12]; analysis based on strong convexity and a
contraction argument; Iteration complexity has been studied
in [He 12]
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Main Challenges: How about K ≥ 3?

◮ Oddly, when K ≥ 3, there is little convergence analysis

◮ Recently [Chen et al 13] discovered a counter example
showing three-block ADMM is not necessarily convergent

◮ When f(·) is strongly convex, and when α is small enough,
the algorithm converges [Han-Yuan 13]

◮ Some relaxed condition has been given recently in
[Lin-Ma-Zhang 14], but still need K − 1 blocks to be strongly
convex

◮ What about the case when fk(·)’s are convex but not strongly
convex? nonsmooth?

◮ Besides convergence, can we characterize how fast the
algorithm converges?
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Our Main Result [Hong-Luo 12]

Suppose some regularity conditions hold. If the stepsize α is suffi-
ciently small, then

◮ the sequence of iterates {(xr, yr)} generated by the ADMM
algorithm (12) converges linearly to an optimal primal-dual
solution for (1.1).

◮ the sequence of feasibility violation {‖Exr − q‖} converges
linearly.

◮ No strong convexity assumed

◮ Linear convergence here means certain measure of optimality
gap shrinks by a constant factor after each ADMM iteration

◮ This result applies to any finite K > 0
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Main Assumptions
The following are the main assumptions regarding f :

(a) The global minimum of (1.1) is attained and so is its dual
optimal value

(b) The smooth part g further decomposable as

g(x1, · · · , xk) =
K
∑

k=1

gk(Akxk)

where gk is convex; Ak’s are some given matrices (not
necessarily full column rank)

(c) Each gk is strictly convex and continuously differentiable with
a uniform Lipschitz continuous gradient

‖AT
k∇gk(Axk)−AT

k∇gk(Ax
′
k)‖ ≤ L‖xk − x′k‖, ∀ xk, x

′
k ∈ Xk
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Main Assumptions (cont.)

(d) Each hk satisfies either one of the following conditions

(1) The epigraph of hk(xk) is a polyhedral set.
(2) hk(xk) = λk‖xk‖1 +

∑

J wJ‖xk,J‖2, where
xk = (· · · , xk,J , · · · ) is a partition of xk with J being the
partition index.

(3) Each hk(xk) is the sum of the functions described in the
previous two items.

(e) Each submatrix Ek has full column rank.

(f) The feasible sets Xk’s are compact polyhedral sets.
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Preliminary: Measures of Optimality (cont.)

◮ Let X(yr) denote the set of optimal solutions for

d(yr) = min
x

L(x; yr),

and let
x̄r = argmin

x̄∈X(yr)
‖x̄− xr‖.

◮ Let us define

dist (xr,X(yr)) = min
x̄∈X(yr)

‖x̄− xr‖,

and
dist (yr, Y ∗) = min

ȳ∈Y ∗

‖ȳ − yr‖.
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The Key Idea

◮ Define the dual optimality gap as

∆r
d = d∗ − d(yr) ≥ 0.

◮ Define the primal optimality gap as

∆r
p = L(xr+1; yr)− d(yr) ≥ 0.

◮ If ∆r
d +∆r

p = 0, then an optimal solution is obtained

◮ The Key Step: Show that the combined dual and primal
gaps ∆r

d +∆r
p decreases linearly in each iteration
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Illustration of the Gaps (iteration r)

Figure: Illustration of the reduction of the combined gap.
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Illustration of the Gaps (iteration r + 1)

Figure: Illustration of the reduction of the combined gap.
25 / 57



Introduction The ADMM Algorithm The Main Result

Illustration of the Gaps (iteration r + 2)

Figure: Illustration of the reduction of the combined gap.
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The BSUM-M Algorithm: Motivation and Main Ideas

◮ Questions
◮ Can we do inexact primal update (i.e., proximal update)?
◮ How to choose the dual stepsize α?
◮ Can we consider more flexible block selection rules?

◮ To address these questions, we introduce the
Block Successive Upperbound Minimization method of
Multipliers (BSUM-M)

◮ Main idea: Primal update

Pick the primal variables either sequentially or randomly
Optimize some approximate version of L(x, y)

◮ Main idea: Dual update

Inexact dual ascent + proper step size control

28 / 57



Introduction The ADMM Algorithm The Main Result

The BSUM-M Algorithm: Details

◮ At iteration r + 1, a block variable xk is updated by solving

min
xk∈Xk

uk
(

xk;x
r+1
1 , · · · , xr+1

k−1, x
r
k, · · · , xrK

)

+ 〈yr+1, q − Ekxk〉+ hk(xk)

◮ uk(· ; xr+1
1 , · · · , xr+1

k−1, x
r
k, · · · , xrK): is an upper-bound of

g(x) +
ρ

2
‖q − Ex‖2

at the current iterate (xr+1
1 , · · · , xr+1

k−1, x
r
k, · · · , xrK)

◮ Proximal gradient step, proximal point step are special cases
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The BSUM-M Algorithm: G-S Update Rule

The BSUM-M Algorithm

At each iteration r ≥ 1:














yr+1 = yr + αr(q − Exr) = yr + αr

(

q −
K
∑

k=1

Ekx
r
k

)

,

xr+1
k = arg min

xk∈Xk

uk(xk;w
r+1
k )− 〈yr+1, Ekxk〉+ hk(xk), ∀ k

where αr > 0 is the dual stepsize.

◮ To simplify notations, we have defined

wr+1
k := (xr+1

1 , · · · , xr+1
k−1, x

r
k, x

r
k+1, · · · , xrK),
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The BSUM-M Algorithm: Randomized Update Rule
◮ Select a vector {pk > 0}Kk=0 such that

∑K
k=0 pk = 1

◮ Each iteration “t” only updates a single randomly selected
primal or dual variable

The Randomized BSUM-M Algorithm

At iteration t ≥ 1, pick k ∈ {0, · · · ,K} with probability pk and

If k = 0
yt+1 = yt + αt(q − Ext),

xt+1
k = xt

k, k = 1, · · · ,K.

Else If k ∈ {1, · · · ,K}

xt+1
k = argminxk∈Xk

uk(xk;x
t)− 〈yr, Ekxk〉+ hk(xk),

xt+1
j = xt

j , ∀ j 6= k, yt+1 = yt.

End
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Key Features

◮ Primal update similar to (randomized) BCD [Nestrov 12]
[Richtárik- Takáč12] [Saha-Tewari 13]; but can deal with
linear coupling constraint

◮ Primal-dual update similar to ADMM; but can deal with
multiple coupled blocks

◮ Using approximate upper bound function – closed-form
subproblem

◮ Flexibility in update schedule – deterministic+randomized

◮ Key Questions

How to select the approximate upper bound function
How to select the primal/dual stepsize (ρ, α)
Guaranteed convergence?
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Convergence Analysis: Assumptions

◮ Assumption A (on the problem)

(a) Problem (1.1) is convex and feasible

(b) g(x) = ℓ(Ax) + 〈x, b〉; ℓ(·) smooth strictly convex, A not
necessarily full column rank

(c) Nonsmooth function hk:

hk(xk) = λk‖xk‖1 +
∑

J

wJ‖xk,J‖2,

where xk = (· · · , xk,J , · · · ) is a partition of xk; λk ≥ 0 and
wJ ≥ 0 are some constants.

(d) The feasible sets {Xk} are compact polyhedral sets, and are
given by Xk := {xk | Ckxk ≤ ck}.
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Convergence Analysis: Assumptions
◮ Assumption B (on uk)

(a) uk(vk;x) ≥ g(vk, x−k) +
ρ
2‖Ekvk − q + E−kx−k‖2, ∀ vk ∈

Xk, ∀ x, k (upper-bound)
(b) uk(xk;x) = g(x) + ρ

2‖Ex− q‖2, ∀ x, k (locally tight)
(c) ∇uk(xk;x) = ∇k

(

g(x) + ρ
2‖Ex− q‖2

)

, ∀ x, k

(d) For any given x, uk(vk;x) is strongly convex in vk
(e) For given x, uk(vk;x) has Lipchitz continuous gradient

Figure: Illustration of the upper-bound.
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The Convergence Result [Hong et al 13]

Suppose Assumptions A-B hold, and the dual stepsize αr satisfies

∞
∑

r=1

αr = ∞, lim
r→∞

αr = 0.

Then we have the following:

◮ For the BSUM-M, we have limr→∞ ‖Exr − q‖ = 0, and every
limit point of {xr, yr} is a primal and dual optimal solution.

◮ For the RBSUM-M, we have limt→∞ ‖Ext − q‖ = 0 w.p.1.
Further, every limit point of {xt, yt} is a primal and dual
optimal solution w.p.1.
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Numerical Result: Counterexample for multi-block ADMM

◮ Recently [Chen-He-Ye-Yuan 13] shows (through an example)
that applying ADMM to multi-block problem can diverge

◮ We show applying (R)BSUM-M to the same problem
converges

◮ Main message: Dual stepsize control is crucial

◮ Consider the following linear systems of equations (unique
solution x1 = x2 = x3 = 0)

E1x1 + E2x2 + E3x3 = 0,

with [E1 E2 E3] =





1 1 1
1 1 2
1 2 2



 .
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Counterexample for multi-block ADMM (cont.)
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Figure: Iterates generated by the
BSUM-M. Each curve is averaged
over 1000 runs (with random
starting points).

0 200 400 600 800 1000 1200
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

iteration (t)

 

 

x
1

x
2

x
3

||x
1
+x

2
+x

3
||

Figure: Iterates generated by the
RBSUM-M algorithm. Each curve is
averaged over 1000 runs (with
random starting points)
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ADMM for nonconvex problem?

◮ ADMM is known to work for separable convex problems

◮ But ADMM is also known to work well for nonconvex
problems, at least empirically

◮ Nonnegative matrix factorization [Zhang 10] [Sun-Fevotte 14]
◮ Phase retrieval [Wen et al 12]
◮ Distributed matrix factorization [Ling-Xu-Yin-Wen 12]
◮ Polynomial optimization [Jiang-Ma-Zhang 13]
◮ Asset allocation [Wen et al 13]
◮ Zero variance discriminant analysis [Ames-Hong 14]
◮ ...

◮ Although ADMM works very well empirically, theoretically
little is known

◮ To show convergence, most of the analysis assumes favorable
properties on the iterates generated by the algorithm...
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Convergence analysis of ADMM for nonconvex problems

◮ It is indeed possible to show ADMM globally converges for
nonconvex problems [Hong-Luo 14]

◮ For a family of nonconvex consensus problems
◮ For a family of nonconvex, multi-block sharing problems

◮ Key ingredients:
◮ Consider the vanilla ADMM
◮ Keep primal and dual stepsize identical (α = ρ)
◮ ρ large enough to make each subproblem strongly convex
◮ Use the augmented Lagrangian as the potential function

◮ Our analysis can extend to flexible block selection rules
◮ Gauss-Seidel block selection rule
◮ Randomized block selection rule
◮ Essentially Cyclic block selection rule
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The Consensus Problem

◮ Consider the following nonconvex problem

min f(x) :=

K
∑

k=1

gk(x) + h(x)

s.t. x ∈ X

(3.5)

◮ gk: smooth, possibly nonconvex functions

◮ h: is a convex nonsmooth regularization term

◮ This is the global consensus problem discussed heavily in
[Section 7, Boyd et al 11], but there only convex cases are
considered
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The Consensus Problem (cont.)

◮ In some applications, each gk handled by a single agent

◮ This motivates the following consensus formulation

min

K
∑

k=1

gk(xk) + h(x)

s.t. xk = x, ∀ k = 1, · · · ,K, x ∈ X.

(3.6)

◮ The augmented Lagrangian is given by

L({xk}, x; y) =
K
∑

k=1

gk(xk) + h(x) +

K
∑

k=1

〈yk, xk − x〉

+
K
∑

k=1

ρk

2
‖xk − x‖2.
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The ADMM for the Consensus Problem

Algorithm 1. ADMM for the Consensus Problem

At each iteration t+ 1, compute:

xt+1 = argmin
x∈X

L({xt
k}, x; yt). (3.7)

Each node k computes xk by solving:

xt+1
k = argmin

xk

gk(xk) + 〈ytk, xk − xt+1〉+ ρk

2
‖xk − xt+1‖2. (3.8)

Update the dual variable:

yt+1
k = ytk + ρk

(

xt+1
k − xt+1

)

. (3.9)
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Main Assumptions

Assumption C

C1. Each ∇gk is Lipschitz Continuous with constant Lk; h is
convex (possible nonsmooth)

C2. For all k, the stepsize ρk is chosen large enough such that:
◮ For all k, the xk subproblem is strongly convex with modulus

γk(ρk);

◮ For all k, ρk > max{ 2L2

k

γk(ρk)
, Lk}.

C3. f(x) is lower bounded for all x ∈ X.
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Convergence Analysis [Hong-Luo 14]

Suppose Assumption C is satisfied. Then

lim
t→∞

‖xt+1
k − xt+1‖ = 0.

Further, we have the following

◮ Any limit point of the sequence generated by the ADMM is a
stationary solution of problem (3.6).

◮ If X is a compact set, then the sequence converges to the set
of stationary solutions of problem (3.6).

◮ Primal feasibility always satisfied in the limit

◮ No assumptions made on the iterates
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The Sharing Problem

◮ Consider the following problem

min f(x1, · · · , xK) :=

K
∑

k=1

gk(xk) + ℓ

(

K
∑

k=1

Akxk

)

s.t. xk ∈ Xk, k = 1, · · · ,K.

(3.10)

◮ ℓ: smooth nonconvex

◮ gk: either smooth nonconvex or convex (possibly nonsmooth)

◮ Similar to the well-known sharing problem discussed in
[Section 7.3, Boyd et al 11], but allows nonconvex objective
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Reformulation

◮ This problem can be equivalently formulated into

min

K
∑

k=1

gk(xk) + ℓ (x)

s.t.

K
∑

k=1

Akxk = x, xk ∈ Xk, k = 1, · · · ,K.

(3.11)

◮ A K-block, nonconvex reformulation

◮ Even if gk’s and ℓ are convex, not clear whether ADMM
converges
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Main Assumptions

Assumption D

D1. ∇ℓ(x) is Lipcshitz continuous with constant L; Each Ak full
column rank, with ρmin(A

T
kAk) > 0.

D2. The stepsize ρ is chosen large enough such that:

(1) each xk and x subproblem is strongly convex, with modulus
{γk(ρ)}Kk=1 and γ(ρ), respectively.

(2) ρ > max
{

2L2

γ(ρ) , L
}

.

D3. f(x1, · · · , xK) is lower bounded for all xk ∈ Xk and all k.

D4. gk is either nonconvex Lipcshitz continuous with constant Lk,
or convex (possibly nonsmooth).
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Convergence Analysis [Hong-Luo 14]

Suppose Assumption D is satisfied. Then

lim
t→∞

‖xt+1
k − xt+1‖ = 0.

Further, we have the following

◮ Every limit point generated by ADMM is a stationary
solution of problem (3.11).

◮ If Xk is a compact set for all k, then ADMM converges to
the set of stationary solutions of problem (3.11).

◮ Primal feasibility always satisfied in the limit

◮ No assumptions made on the iterates
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Remarks

◮ For the sharing problem, if all objectives are convex, our result
shows that multi-block ADMM converges with ρ ≥

√
2L

◮ Similar analysis applies for the 2-block reformulation of the
sharing problem

◮ Analysis can be extended to include proximal block updates

◮ Analysis can be generalized to flexible block update rules – all
xk’s do not need to update at the same time
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Conclusions and Future Works

◮ We have shown the convergence and the rate of convergence
for multiblock ADMM without strong convexity

◮ The key is to use the combined primal-dual gap as the
potential function

◮ We introduce a new algorithm called BSUM-M that can solve
multi-block linearly constrained convex problems

◮ The key is to use a diminishing dual stepsize

◮ We show that ADMM converges for two families of
nonconvex, possibly multiple problems

◮ The key is to use the Augemented Lagrangian as the potential
function
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Conclusions and Future Works (cont.)

◮ Iteration complexity analysis for multi-block and/or nonconvex
ADMM?

◮ Can we generalize the analysis for nonconvex ADMM to a
wider range of problems?

◮ Nonlinearly constrained problems?
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Thank You!
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