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Assume that 8* € RP is sparse and unknown. Consider recovering
B* from
y=XB"+e¢

where € is noise.

Note

S :=supp(B*) and T be its complement.

Xs (X1) be the columns of X with indices restricted on S (T)

€ ~ N(0,02) (sub-Gaussian in general)

X is n-by-p, with p > n.
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e Orthogonal Matching Pursuit (OMP, Mallat-Zhang'93)
noise-free: Tropp'04
noise: Cai-Wang'l11
e LASSO (Tibshirani'96)
sign-consistency: Yuan-Lin'06, Zhao-Yu'06, Zou'07,
Wainwright'09
l-consistency: Ritov-Bickel-Tsybakov'09 (also Dantzig)
related: BPDN (Chen-Donoho-Saunders'96), Dantzig
Selector (Candes-Tao'07)

e Anything else do you wanna hear?
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e p >> n: impossible to be strongly convex

min L(5 ), convex p (Huber'73
J Zp p( )

e in presence of noise, not every optimizer arg min L(/3) is
desired: mostly overfitting

e convex constraint/penalization: avoid overfiting, tractable but
lead to bias = non-convex? (hard to find global optimizer)

e dynamics: every algorithm is dynamics (Turing), not
necessarily optimizing an objective function
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e Bregman ISS

() = X7y — XB(1),
olt) € DN3(0) .
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e Bregman ISS

() = X7y — XB(1),
olt) € DN3(0) .

Limit is solution to ming [|B]l1, st XTy=XTXg.
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e Bregman ISS

1
(8 = TXT(y — XB().
p(t) € 0l|A(1)]1-
Limit is solution to ming [|B]l1, st XTy=XTXg.

e Linearized Bregman ISS

pE) + 30 = - XT(y = XB(0).

p(t) € 0l|A(E)]1-
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e Bregman ISS

1
(8 = TXT(y — XB().
p(t) € 0l|A(1)]1-
Limit is solution to ming [|B]l1, st XTy=XTXg.

e Linearized Bregman ISS

pE) + 30 = - XT(y = XB(0).

p(t) € 0l|A(E)]1-

Limit is solution to ming [|B]l1 + 5= [|8]3, s.t. X7y =XTXp.
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We claim that there exists points on their paths (5(t), p(t)):>o0,
which are
e sparse
e sign-consistent (the same sparsity pattern of nonzeros as true
signal)
e unbiased (or less bias) than LASSO
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Bias of LASSO

If S is disclosed by an oracle, the oracle estimator is the subset

least square solution with B’-“r =0and for X, = %XSTXS — 2,
=k -1 1 T * 1 —1yT
Bs =1, ;Xs y)=08s+ ;Zn Xs €, (1)

“Oracle properties”

¢ Model selection consistency: supp(5*) = S;
o Normality: 5% ~ N(8*, "—:Z;l).

So (* is unbiased, i.e. E[3*] = 3*.
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Bias of LASSO

LASSO: .
mﬁin 181l + 5 -lly = X85

optimality condition:

pr_lyr
P nX (y — XPBt), (2a)
pt € O||Btll1, (2b)

where A = 1/t is often used in literature.

e Tibshirani’1996 (LASSO)
¢ Chen-Donoho-Saunders'1996 (BPDN)
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Bias of LASSO

e Path consistency: 37, € (0,00), supp(S,,) = S (e.g. .
Zhao-Yu'06, Zou'06, Yuan-Lin'07, Wainwright'09)
e LASSO is biased

5 A
(BTn)S = BS - 7Zn 1/)7',,; Tn > 0
Tn
eg. X=Ild, n=p=1,
A { 0, if 7<1]/y;

br= y —1/7, otherwise,

(Fan-Li'2001) non-convex penalty is necessary (SCAD,
Zhang's PLUS, Zou's Adaptive LASSO, etc.)

Any other simple scheme?
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Dynamics of Bregman Inverse Scale Space

Taking derivative (assuming differentiability) w.r.t. t

1
Pt = ;XT(y — Xﬁt)t

= = %XT(y — X(Bet + Be), pe € 9)1Beln

e Debias: sign-consistency (sign(3;) = sign(5*)) = oracle
estimator B, 1= (3,7 + 3, = B*
seg X=Id n=p=1,
0, ift<l/y;
Bl { /

y, otherwise,
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Dynamics of Bregman Inverse Scale Space

Nonlinear ODE (differential inclusion)

pe=XT(y ~ XBo), (33)
pt € 9||Bell1- (3b)
starting at t = 0 and p(0) = 3(0) = 0.

e Replace p/t in LASSO by dp/dt

e Burger-Gilboa-Osher-Xu'06 (image recovery and recovers the
objects in an image in an inverse-scale order as t increases

(larger objects appear in (; first))
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Dynamics of Bregman Inverse Scale Space

e [3; is piece-wise constant in t:

B = argming  [ly — X513
subject to  (pg,.,)i3i =0 Vi€ Skit, (4)
B =0 VJj€ Tkt

® fyr1= sup{t >tk py + %XT(y - X/Btk) S 8”5&“1}
® p; is piece-wise linear in t,

— t—ty
Pt = Ptk + tk+1_tkptk+17

/Bt = Btku

t € [tu, tky1),

e Sign consistency p; = sign(*) = B = B*
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Discrete Algorithm: Linearized Bregman Iteration

Damped Dynamics: continuous solution path

. 1. 1
Pt + ;/Bt = ;XT(Y - Xﬁt)a pt € aHﬁtHl- (5)

Linearized Bregman lteration as forward Euler discretization
(Osher-Burger-Goldfarb-Xu-Yin'05,
Yin—Osher-GoIdfarb-Darbon'08): for pi € 9||Bkll1,

Pk+1+ 5k+1 = pk+— 9k + XT(Y — XPBk),

e Damping factor: k > 0

e Step size: oy
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Discrete Algorithm: Linearized Bregman Iteration

Linearized Bregman Iteration:

Zey1 = ze — a X T (XKShrink(z:, 1) — y)

e This is not ISTA:
z¢4+1 = Shrink(z; — otiT(th —y¥),\)

ISTA solves LASSO for fixed A
e This is not OMP which only adds in variables.
e This is not Donoho-Maleki-Montanari's AMP
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Discrete Algorithm: Linearized Bregman Iteration

n =200, p =100, S ={1,...

for i # j and 1 otherwise)

30}, X ~ N(0,5,) (o = 1/(3p)

o | LB(r—4) IB(r = 64) | LB(x — 1024) 1SS LASSO

1 | 0.9771(0.0124) || 0.994(0.0069) | 0.9947(0.0065) | 0.9948(0.0064) | 0.9945(0.0068)
3 | 0.9604(0.0169) || 0.9867(0.009) | 0.9882(0.0083) | 0.9884(0.0082) | 0.9879(0.0086)
5 (]9393(().()22(}') (1.5)659((].[1188) (JHBTH(U.(]IX&) (].9676([].[]187) [1.9(1'71((]‘()187)

TaBLE 1

Mean AUC (standard deviation) for three methods at different noise levels (o ): 1SS has a
slightly better performance than LASSO in terms of AUC and as k increases, the

performance of LB approaches that of 155. As noise level o increases, the performance of
all the methods drops.
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Linearized Bregman lIteration

Discrete Algorithm:

ISS

Lasso

LB k=64

=1

LB x
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Path Consistency

We are going to present a consistency theory where

e Under what conditions one can achieve

sign consistency (model selection consistency)

l-consistency (||8(t) — 5*[l2 < O(+/s log p/n))

e When sign-consistency holds, Bregman ISS path returns the

oracle estimator without bias

e Early stopping regularization against overfitting noise
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Path Consistency

(A1) Restricted Strongly Convex: 3y € (0, 1],
LoT
EXS Xs =l
(A2) Incoherence/Irrepresentable Condition: 3n € (0, 1),

<l-n

—1
HxxT XX5<XX5)

o0

e The incoherence condition is used independently in Tropp'04,
Yuan-Lin'05, Zhao-Yu'06, and Zou'06, Wainwright'09,etc.
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Path Consistency

Sign-consistency

Theorem (Path Consistency of Bregman ISS)
Assume (A1) and (A2). Define

-1
_ n n
= — X;
Tim g o ()

and the smallest magnitude (3. = min(|3|:i € S). Then

min

¢ (No-false-positive) for all t <7, the path has
no-false-positive with high probability, supp(5(t)) C S;
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Sign-consistency

Theorem (continued)
e (Sign consistency for path) instead if the signal is strong
enough such that

. 4o y 80(2 + log s) (maxjeT || Xj||) log d
=\ A2 1 n

then there is T < T such that solution path [(t) reaches sign

consistency for every t € [r,7].
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Theorem (continued)

¢ (h-consistency) Under (A1) and (A2), there is an early
stopping T, € [0, 7], such that with high probability
18(70) = B*[|2 < Coy/ =<, where

G 20 N 8o (maxjet || Xi|)
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Path Consistency
(o] le]e]ele)

ly-consistency

Similar results for LASSO are established in Wainwright'09

with A* = 1/7, where the lasso path are sign-consistent

B(T) is unbiased, while LASSO estimator is biased

The h-error bound is of minimax optimal rates

The temporal mean path

is sign-consistent under precisely the same condition as
LASSO, though they are different!
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Path Consistency
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ly-consistency

Theorem (Linearized Bregman lterations)

Assume that k is large enough and « is small enough, with
ra||XEXs|| < 2,

1-B -
rom U BIN [0 (o
20 logp \ jeT

log p N X572+ 2sv/log n 5
yn nyy

then all the results can be extended to discrete algorithm setting

Brax + 20 B < kn,

(Linearized Bregman lterations).
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Bregman ISS as gradient descent in dual space:

pe = —VL(B:) = %XT(y — X(Bet + Bt)), pe € 0] Belh

e incoherence condition and strong signals ensure it firstly

evolves on index set S to reduce the loss

e strongly convex in subspace restricted on index set S = fast

decay in loss

e carly stopping after all strong signals are detected, before

picking up the noise
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No-false-positive condition is the same as LASSO
For t < T consider Oracle dynamcs

dp’5: 1

D =~ XIXs(Bs — f5), (1) € A5 (7)

where 2XJI X5 > ;.
a generalized Gronwall-Bellman-Bihari inequality:

d

21 (D(B5. 5)) < —yF~1(D(53, B5))

where F is a piecewise polynomial and D is the Bregman

distance associated to || - [|1.
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3 Sign-consistency and h-consistency are reached by setting

these stopping time 7; < T where oracle dynamics meets

Bregman ISS
71 = inf{t > 0 sign(Bs) = sign(B)} < O(log s/ Brin)
7(C) =

inf{t> 0: 8% — Btll» < c,/s",’f”} < 0(% m

p
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Discussion

These results can be extended to discrete algorithm, the simple
1-line Linearized Bregman iteration:

e achieve mean path sign-consistency, equivalent to LASSO

e and path sign-consistency with less bias, better than LASSO

e LB iteration is as simple as ISTA, but more powerful
cost: two free-parameters, k and step-size oy
tips: axk||Xa| < 2, large k to remove Elastic-net effect

e A simple dynamics acts as if nonconvex optimization...
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e Osher, Ruan, Xiong, Yao, and Yin, Sparse Recovery via
Differential Equations, arXiv:1406.7728

e Xu, Xiong, Huang, and Yao, Robust Statistical Ranking:
Theory and Algorithms, arXiv:1408.3467
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