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Polyhedral Constrained Composite Lq Minimization

Polyhedral constrained composite Lq (0 < q < 1) minimization problem

min
x∈RN

F (x) := ‖max {b − Ax , 0}‖qq + h(x)

s.t. x ∈ X .
(1)

- A = [a1, a2, ..., aM ]T ∈ RM×N , b = [b1, b2, ..., bM ]T ∈ RM ;

- h(x) : continuously differentiable satisfying

‖∇h(x)−∇h(y)‖2 ≤ Lh ‖x − y‖2 , ∀ x , y ∈ X ;

- X ⊆ RN : a general polyhedral set.
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Two Extremes

min
x∈RN

‖max {b − Ax , 0}‖qq + h(x)

s.t. x ∈ X .

- as q → 0, the above Lq minimization problem approaches

min
x∈RN

‖max {b − Ax , 0}‖0 + h(x)

s.t. x ∈ X .

- as q → 1, the above Lq minimization problem approaches

min
x∈RN

‖max {b − Ax , 0}‖1 + h(x)

s.t. x ∈ X .
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Two Motivated Applications
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Wireless Communications

SINR at receiver k in the K -link SISO interference channel:

SINRk :=
gkkpk∑

j 6=k

gkjpj + ηk
≥ γk , k = 1, 2, ...,K

p̄k ≥ pk ≥ 0, k = 1, 2, ...,K

- pk : transmission power at transmitter k

- gkj ≥ 0 : channel gain from transmitter j to receiver k

- ηk > 0 : noise power of link k

- γk > 0 : SINR target of link k

- p̄k > 0 : power budget at transmitter k
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Joint Power and Admission Control

Infeasibility issues of the linear system

SINRk ≥ γk , p̄k ≥ pk ≥ 0, k = 1, 2, . . . ,K

- mutual interference among different links

- individual power budget constraints

The admission control is necessary to determine the connections to be
rejected.

Joint power and admission control (JPAC):

- the admitted links should be satisfied with their required SINR targets

- the number of admitted (removed) links should be maximized (minimized)

- the total transmission power to support the admitted links should be minimized
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Normalized Channel

Two equivalent equations:

- power constraint: 0 ≤ pk ≤ p̄k ⇔ 0 ≤ xk :=
pk
p̄k
≤ 1

- SINR constraint:
gkkpk∑

j 6=k

gkjpj + ηk
≥ γk ⇔

xk∑
j 6=k

γkgkj p̄j
gkk p̄k

xj +
γkηk
gkk p̄k

≥ 1

Normalized channel:

- noise vector b =

(
γ1η1

g11p̄1
,
γ2η2

g22p̄2
, · · · , γKηK

gKK p̄K

)T

> 0

- power allocation vector x =

(
p1

p̄1
,
p2

p̄2
, · · · , pK

p̄K

)T

- channel gain matrix A with its (k, j)-th entry

akj =

 −
γkgkj p̄j
gkk p̄k

, if k 6= j ;

1, if k = j .
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Composite Lq Minimization Formulation

Simple to check

gkkpk∑
j 6=k

gkjpj + ηk
≥ γk ⇐⇒ (b − Ax)k ≤ 0

The JPAC problem can be formulated as [L.-Dai-Luo, 2013]

min
x
‖max {b − Ax , 0}‖qq + ρp̄T x

s.t. 0 ≤ x ≤ e.
(2)
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Support Vector Machine: Linearly Separable Data

Given a database
{

sm ∈ RN−1, ym ∈ R
}M
m=1

, where sm is called example and
ym is the label associated with sm.

Find a linear discriminant function `(s) = ŝT x with ŝ = [sT , 1]T ∈ RN

- all data are correctly classified

- the margin of the hyperplane ` that separates the two classes is maximized

If the data are linearly separable, the above problem can be formulated as

min
x

1

2

N−1∑
n=1

x2
n

s.t. ym ŝTmx ≥ 1, m = 1, 2, . . . ,M.

Ya-Feng Liu (LSEC ICMSEC AMSS CAS) Polyhedral Constrained Composite Lq Minimization Sept. 3, 2014, PKU 10 / 51



Support Vector Machine: Not Linearly Separable Data

Data are often NOT linearly separable in practice, and thus the above
problem is not feasible.

For the not linearly separable data, we can solve the following model instead:

min
x

M∑
m=1

max
{

1− ym ŝTmx , 0
}q

+
ρ

2

N−1∑
n=1

x2
n .

The above problem with q = 1 is called the soft-margin SVM in
[Cortes-Vapnik, 1995].
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Related Works
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Existing Works I

min
x

ρ

2
‖Ax − b‖2 + ‖x‖qq

- Lower bound theory [Chen-Xu-Ye, 2010]

- Strong NP-hardness [Chen-Ge-Wang-Ye, 2014]

- Iterative reweighted L1 and L2 minimization algorithms [Xu-Chang-Xu-Zhang,
2012; Lai-Xu-Yin, 2013;...]

min
x
‖x‖qq s.t. Ax = b

- Sufficient conditions in recovering the sparsest solution [Chartrand, 2007;
Chartrand-Staneva, 2008; Foucart-Lai, 2009]

- Strong NP-hardness and a potential reduction algorithm [Ge-Jiang-Ye, 2011]

- Iterative reweighted minimization methods [Chartrand-Yin, 2008; Daubechies
et al., 2010; ...]

- Extend to the matrix case [Ji-Sze-Zhou-So-Ye, 2013]
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Existing Works II

min
x

h(x) + ‖x‖qq (3)

Smoothing quadratic regularization (SQR) algorithm and O(ε−2) worst-case
iteration complexity analysis [Bian-Chen, 2013]

First and second order interior-point methods, O(ε−2) and O(ε−3/2) iteration
complexity results [Bian-Chen-Ye, 2014]

Lower bound theory, iterative reweighted minimization methods, unified
global convergence analysis [Lv, 2012]
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Existing Works III

min
x

h(x) +
M∑

m=1

|aTmx |q (4)

Second order necessary and sufficient conditions [Chen-Niu-Yuan, 2013]

Smoothing trust region Newton (STRN) method [Chen-Niu-Yuan, 2013]

An SQR algorithm and O(ε−2) iteration complexity analysis [Bian-Chen,
2014]
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There Are More in This Workshop!

“A Smoothing Majorization Method for `2-`p Matrix Minimization” [Zhang]

“An Improved Algorithm for the L2-Lp Minimization Problem [Ge]

“p-Norm Constrained Quadratic Programming: Conic Approximation
Methods” [Xing]

· · · · · ·
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Some Remarks

The definitions of ε-KKT points in the aforementioned works are different
and thus are not comparable to each other.

All of the aforementioned problems are special cases of problem (1).

All of the aforementioned problems are sparse optimization problem with
“equality constraints”.

Problem (1) is essentially a sparse optimization problem with “inequality
constraints”.

Many of the aforementioned algorithms cannot be used to solve problem (1).

Iterative reweighted minimization methods can be modified to solve problem
(1).

However, the worst-case iteration complexity of all existing iterative
reweighted minimization methods remains unclear.

Ya-Feng Liu (LSEC ICMSEC AMSS CAS) Polyhedral Constrained Composite Lq Minimization Sept. 3, 2014, PKU 17 / 51



Some Remarks

The definitions of ε-KKT points in the aforementioned works are different
and thus are not comparable to each other.

All of the aforementioned problems are special cases of problem (1).

All of the aforementioned problems are sparse optimization problem with
“equality constraints”.

Problem (1) is essentially a sparse optimization problem with “inequality
constraints”.

Many of the aforementioned algorithms cannot be used to solve problem (1).

Iterative reweighted minimization methods can be modified to solve problem
(1).

However, the worst-case iteration complexity of all existing iterative
reweighted minimization methods remains unclear.

Ya-Feng Liu (LSEC ICMSEC AMSS CAS) Polyhedral Constrained Composite Lq Minimization Sept. 3, 2014, PKU 17 / 51



Some Remarks

The definitions of ε-KKT points in the aforementioned works are different
and thus are not comparable to each other.

All of the aforementioned problems are special cases of problem (1).

All of the aforementioned problems are sparse optimization problem with
“equality constraints”.

Problem (1) is essentially a sparse optimization problem with “inequality
constraints”.

Many of the aforementioned algorithms cannot be used to solve problem (1).

Iterative reweighted minimization methods can be modified to solve problem
(1).

However, the worst-case iteration complexity of all existing iterative
reweighted minimization methods remains unclear.

Ya-Feng Liu (LSEC ICMSEC AMSS CAS) Polyhedral Constrained Composite Lq Minimization Sept. 3, 2014, PKU 17 / 51



Some Remarks

The definitions of ε-KKT points in the aforementioned works are different
and thus are not comparable to each other.

All of the aforementioned problems are special cases of problem (1).

All of the aforementioned problems are sparse optimization problem with
“equality constraints”.

Problem (1) is essentially a sparse optimization problem with “inequality
constraints”.

Many of the aforementioned algorithms cannot be used to solve problem (1).

Iterative reweighted minimization methods can be modified to solve problem
(1).

However, the worst-case iteration complexity of all existing iterative
reweighted minimization methods remains unclear.

Ya-Feng Liu (LSEC ICMSEC AMSS CAS) Polyhedral Constrained Composite Lq Minimization Sept. 3, 2014, PKU 17 / 51



Some Remarks

The definitions of ε-KKT points in the aforementioned works are different
and thus are not comparable to each other.

All of the aforementioned problems are special cases of problem (1).

All of the aforementioned problems are sparse optimization problem with
“equality constraints”.

Problem (1) is essentially a sparse optimization problem with “inequality
constraints”.

Many of the aforementioned algorithms cannot be used to solve problem (1).

Iterative reweighted minimization methods can be modified to solve problem
(1).

However, the worst-case iteration complexity of all existing iterative
reweighted minimization methods remains unclear.

Ya-Feng Liu (LSEC ICMSEC AMSS CAS) Polyhedral Constrained Composite Lq Minimization Sept. 3, 2014, PKU 17 / 51



Some Remarks

The definitions of ε-KKT points in the aforementioned works are different
and thus are not comparable to each other.

All of the aforementioned problems are special cases of problem (1).

All of the aforementioned problems are sparse optimization problem with
“equality constraints”.

Problem (1) is essentially a sparse optimization problem with “inequality
constraints”.

Many of the aforementioned algorithms cannot be used to solve problem (1).

Iterative reweighted minimization methods can be modified to solve problem
(1).

However, the worst-case iteration complexity of all existing iterative
reweighted minimization methods remains unclear.

Ya-Feng Liu (LSEC ICMSEC AMSS CAS) Polyhedral Constrained Composite Lq Minimization Sept. 3, 2014, PKU 17 / 51



Some Remarks

The definitions of ε-KKT points in the aforementioned works are different
and thus are not comparable to each other.

All of the aforementioned problems are special cases of problem (1).

All of the aforementioned problems are sparse optimization problem with
“equality constraints”.

Problem (1) is essentially a sparse optimization problem with “inequality
constraints”.

Many of the aforementioned algorithms cannot be used to solve problem (1).

Iterative reweighted minimization methods can be modified to solve problem
(1).

However, the worst-case iteration complexity of all existing iterative
reweighted minimization methods remains unclear.

Ya-Feng Liu (LSEC ICMSEC AMSS CAS) Polyhedral Constrained Composite Lq Minimization Sept. 3, 2014, PKU 17 / 51



Some Fundamental Questions

Polyhedral constrained composite Lq minimization:

min
x∈RN

‖max {b − Ax , 0}‖qq + h(x)

s.t. x ∈ X .

Some fundamental questions that will be addressed in this talk:

Q1: Why use the non-convex Lq minimization formulation? Is it better than the
corresponding convex L1 counterpart? Can the solution of the Lq minimization
solve the original L0 minimization problem?

Q2: Is it easy to solve? Is there any polynomial time algorithm which can solve it
to global optimality?

Q3: How to check a given point is a local minimizer or a stationary point of the
problem? What is the KKT optimality conditions?

Q4: Since the problem is non-convex, nonsmooth, and non-Lipschitz, how to solve
it efficiently with a worst-case iteration complexity guarantee?

Ya-Feng Liu (LSEC ICMSEC AMSS CAS) Polyhedral Constrained Composite Lq Minimization Sept. 3, 2014, PKU 18 / 51



Q1: Why use the non-convex Lq minimization formulation? Is it better than the
corresponding convex L1 counterpart? Can the solution of the Lq minimization
solve the original L0 minimization problem?

Exact Recovery
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L1 vs Lq: A Toy Example

Let A, b, p̄ in the JPAC problem (2) be

A =

 1 0 −1
0 1 −1
−1 −1 1

 , b = 0.5e, p̄ = e.

The optimal solution to problem (2) with q = 0 is

x∗ = (0.5, 0.5, 0)T .

For any ρ ≥ 0, x = 0 is the unique global minimizer of the L1 minimization
problem.

For any given q ∈ (0, 1), if ρ satisfies

0 < ρ < ρ̄q := min {1 + (0.5)q, 2q} − (1.5)q,

then the unique global minimizer of the Lq minimization problem (2) is x∗.
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Why L1 Does Not Work Well?

The problem of minimizing ‖Ax − b‖1 is equivalent to the problem of
minimizing ‖Ax − b‖0 with high probability under the assumptions that
[Candes-Tao, 2005]

1) the vector Ax − b at the true solution x∗ is sparse, where A ∈ Rm×n and
m > n; and

2) the entries of the matrix A is independent and identically distributed (i.i.d.)
Gaussian.

However, these two assumptions often do not hold true.

For instance, A in the JPAC problem has a special structure, i.e., all diagonal
entries are one and all non-diagonal entries are non-positive.
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Exact Recovery Result

Theorem (L.-Ma-Dai, 2013)

For any given instance of the JPAC problem (2), there exists q̄ > 0 such that
when q ∈ (0, q̄], the global solution to the Lq minimization problem is one of the
optimal solutions to problem (2) with q = 0.

This result depends on the special structure of A and b.

Does this result hold true generally?

More works along this direction need to be done.
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Q2: Is the non-convex Lq minimization problem easy to solve? Is there any
polynomial time algorithm which can solve it to global optimality?

Computational Complexity
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Convexity vs Non-Convexity

Two “easy” non-convex problems:

- ratio of quadratic functions over an ellipsoid [Beck-Teboulle, 2009; Xia, 2013]

min
x∈Rn

xTA1x + bT
1 x + c1

xTA2x + bT
2 x + c2

s.t. ‖A3x‖2 ≤ ρ.

- max-min fairness linear transceiver design for the SIMO interference channel
[L.-Hong-Dai, 2013]

max
{uk , pk}

min
k


|u†khkk |

2pk

σ2
k‖uk‖2 +

∑
j 6=k

|u†khkj |
2pj


s.t. 0 ≤ pk ≤ p̄k , k = 1, 2, ...,K .

Complexity theory: a robust tool to characterize the computational
tractability of an optimization problem
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Complexity Results

Theorem (L.-Ma-Dai-Zhang, 2014)

For any given 0 < q < 1, the unconstrained minimization

min
x
‖max {b − Ax , 0} ‖qq

is strongly NP-hard, and hence so is the polyhedral constrained Lq minimization
problem (1).

=⇒ Find high quality approximate solutions or locally optimal solutions in
polynomial time
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Q3: How to check a given point is a local minimizer or a stationary point of the
composite Lq minimization problem? What is the KKT optimality conditions?

Optimality Conditions
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An Auxiliary Smooth Problem

Original nonsmooth non-Lipschitzian problem

min
x
‖max {b − Ax , 0}‖qq + h(x)

s.t. x ∈ X .

For any given x̄ , construct an auxiliary smooth problem

min
x

∑
m∈Jx̄

(b − Ax)qm + h(x)

s.t. (b − Ax)m ≤ 0, m ∈ Kx̄ ,

x ∈ X .

(5)

with
Ix̄ = {m | (b − Ax̄)m < 0} ,
Jx̄ = {m | (b − Ax̄)m > 0} ,
Kx̄ = {m | (b − Ax̄)m = 0} .

(6)
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Key Connections

Some observations

- The objective value of problem (5) is equal to that of problem (1) at point x̄ .

- The objective function of problem (5) is continuously differentiable in the
neighborhood of point x̄ .

Equivalence of problems (1) and (5) in the sense of sharing the same local
minimizers

Lemma

x̄ is a local minimizer of problem (1) if any only if it is a local minimizer of
problem (5) with Jx̄ and Kx̄ given in (6).
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Optimality Conditions

First order optimality conditions

Theorem (L.-Ma-Dai-Zhang, 2014)

If x̄ ∈ X is a local minimizer of problem (1), there must exist λ̄ ≥ 0 ∈ R|Kx̄ | such
that

λ̄m(b − Ax̄)m = 0, ∀ m ∈ Kx̄ (7)

and
x̄ − PX

(
x̄ −∇L(x̄ , λ̄)

)
= 0, (8)

where
L(x , λ) =

∑
m∈Jx̄

(b − Ax)qm + h(x) +
∑
m∈Kx̄

λm(b − Ax)m,

and Jx̄ and Kx̄ are defined in (6).

Second order optimality conditions (skipped)
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KKT Condition of Problem (3)

Definition (Chen-Xu-Ye, 2010; Ge-Jiang-Ye, 2011; Bian-Chen, 2013,
2014)

x̄ is called a KKT point of problem

min
x

h(x) + ‖x‖qq

if it satisfies
q|x̄ |q + X̄∇h(x̄) = 0, (9)

where |x̄ |q = (|x̄1|q, . . . , |x̄N |q)T and X̄ = diag (x̄1, . . . , x̄N) .
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KKT Condition of Problem (4)

Definition (Chen-Niu-Yuan, 2013)

x̄ is called a KKT point of problem

min
x

h(x) +
M∑

m=1

|aTmx |q

if it satisfies
ZT
x̄ ∇Fx̄(x̄) = 0, (10)

where
Fx̄(x) =

∑
aTm x̄ 6=0

∣∣aTmx
∣∣q + h(x)

and Zx̄ is the matrix whose columns form an orthogonal basis for the null space of{
am | aTm x̄ = 0

}
.
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Equivalence of Different Definitions

Proposition

When problem (1) reduces to problem (4), there holds

(7) and (8)⇐⇒ (10);

When problem (1) reduces to problem (3), there holds

(7) and (8)⇐⇒ (9).
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Q4: Since problem (1) is non-convex, nonsmooth, and non-Lipschitz, how to solve
it efficiently with a worst-case iteration complexity guarantee?

An SSQP Framework & Analysis
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Challenges

Two challenges of smoothing algorithms

- How to choose a smoothing function and an algorithm for the smoothing
problem?

- How to update the smoothing parameter?

Both the choice of smoothing functions and the updating rule of the
smoothing parameter play a key role in convergence and iteration complexity
analysis of the smoothing algorithms.
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Smoothing Approximation1

Use

θ(t, µ) =


t, if t > µ;

t2

2µ
+
µ

2
, if 0 ≤ t ≤ µ;

µ

2
, if t < 0

to approximate
θ(t) = max {t, 0} .

Approximation properties

- θ(t, µ) = θ(t), ∀ t ≥ µ

- θ(t, µ) ≥ µ

2
, ∀ t

- θq(t, µ) is continuously differentiable

1Thanks Prof. Xiaojun Chen for the discussion on the choice of the smoothing
function.
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Smoothing Problem

Define F̃ (x , µ) = f̃ (x , µ) + h(x), where f̃ (x , µ) =
∑

m∈M θq((b − Ax)m, µ),
then

F (x) ≤ F̃ (x , µ) ≤ F (x) +
∑

(b−Ax)m≤µ

(µ
2

)q
, ∀ x .

Smoothing problem:

min
x

F̃ (x , µ) :=
∑
m∈M

θq((b − Ax)m, µ) + h(x)

s.t. x ∈ X
(11)

Theorem

For any q ∈ (0, 1) and µ > 0, the smoothing approximation problem (11) is
strongly NP-hard (even for the special case when h(x) = 0 and X = RN).
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Local Convex Quadratic Upper Bound

A local convex quadratic upper bound at point xk

Q(x , xk , µ) = Q1(x , xk , µ) + Q2(x , xk) (12)

- Q1(x , xk , µ) = f̃ (xk , µ) +∇f̃ (xk , µ)T (x − xk) +
1

2
(x − xk)T B̃(xk , µ)(x − xk)

- B̃(x , µ) =
∑
m∈M

κ((b − Ax)m, µ)ama
T
m

- Q2(x , xk) = h(xk) +∇h(xk)T (x − xk) +
1

2
Lh‖x − xk‖2
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Local QP Upper Bound of F̃ (x , µ)

Lemma (A Local QP Upper Bound of Smoothing Function F̃ (x , µ))

For any xk and x such that

(A(xk − x))m ≤ µ, m ∈ Iµxk ,

(A(xk − x))m ≥
− (b − Axk)m

2
, m ∈ J µxk ,

where
Iµxk = {m | (b − Axk)m < −µ} ,
J µxk = {m | (b − Axk)m > 2µ} ,

then
F̃ (x , µ) ≤ Q(x , xk , µ),

where Q(x , xk , µ) is defined in (12).
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An SSQP Framework

Update rule of the smoothing parameter: if xk satisfies∥∥∥PX
(

xk −∇F̃ (xk , µ)
)
− xk

∥∥∥ ≤ µ, (13)

set
µ = σµ, x0 = xk , k = 0;

else compute the next point xk+1.

Algorithmic framework for solving the smoothing problem: let xk+1 be an
(approximate) solution of the following convex QP

min
x∈X

Q(x , xk , µ)

s.t. (A(xk − x))m ≤ µ, m ∈ Iµxk ,

(A(xk − x))m ≥ −
(b − Axk)m

2
, m ∈ J µxk

(14)

such that
F̃ (xk , µ)− F̃ (xk+1, µ) ≥ O(µ4−q).

Termination criterion: the above procedure is repeated until µ ≤ ε and (13)
is satisfied.
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Some Remarks

Flexible to choose subroutines for solving problem (14)

Can deal with the case where Lh is unknown
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Existence of xk+1 : A Shrink Projection Gradient Step

Lemma

For any µ ∈ (0, 1] and k ≥ 0 in the proposed SSQP framework,

xproj
k+1 = xk + ξkτkdk , (15)

where

ξk = min

 −dT
k ∇F̃ (xk , µ)

τkdT
k

(
B̃k + LhIN

)
dk

, 1

 , τk =
µ

(maxm {‖am‖}+ 1) ‖dk‖
< 1,

and
dk = PX (xk −∇F̃ (xk , µ))− xk .

If (13) is not satisfied, then

F̃ (xk , µ)− F̃ (xproj
k+1, µ) ≥ µ4−q/J0, (16)

where J0 = max
{

8q
∑

m ‖am‖2 + 2Lh, 2 maxm {‖am‖}+ 2
}
.
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Existence of xk+1 : Many Other Choices

Lemma

For any µ ∈ (0, 1] and k ≥ 0 in the proposed SSQP framework, suppose that

- xexact
k+1 is the solution of problem (14),

- x snorm
k+1 is the solution of the following problem

min
x∈X

Q(x , xk , µ)

s.t. ‖A (x − xk)‖∞ ≤ µ.

If (13) is not satisfied, then

F̃ (xk , µ)− F̃ (xexact
k+1 , µ) ≥ F̃ (xk , µ)− F̃ (x snorm

k+1 , µ) ≥ F̃ (xk , µ)− F̃ (xproj
k+1, µ). (17)
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Iteration Complexity

Theorem

Let xk+1 = xproj
k+1 in the proposed SSQP framework. Then, for any ε ∈ (0, 1], the

framework will terminate within at most⌈
Jq
T ε

q−4
⌉

(18)

iterations, where

Jq
T =

σq−4
(

F̃ (x0, 1)J0 + 1
)

σq−4 − 1
. (19)

The worst-case iteration complexity function in (18) is a strictly decreasing
function with respect to q ∈ (0, 1) for fixed ε ∈ (0, 1).

This is consistent with the intuition that problem (1) becomes more difficult
to solve as q decreases.
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ε-KKT Point: A Perturbation of the KKT Point

Definition (L.-Ma-Dai-Zhang, 2014)

For any given ε > 0, x̄ ∈ X is called an ε-KKT point of problem (1) if there exists
λ̄ ≥ 0 ∈ R|Kεx̄ | such that ∣∣λ̄m(b − Ax̄)m

∣∣ ≤ εq, m ∈ Kεx̄ (20)

and ∥∥x̄ − PX
(
x̄ −∇Lε(x̄ , λ̄)

)∥∥ ≤ ε, (21)

where
Lε(x , λ) =

∑
m∈J εx̄

(b − Ax)qm + h(x) +
∑
m∈Kεx̄

λm(b − Ax)m

with
Iεx̄ = {m | (b − Ax̄)m < −ε} ,
J εx̄ = {m | (b − Ax̄)m > ε} ,
Kεx̄ = {m | − ε ≤ (b − Ax̄)m ≤ ε} .

(22)
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When Problem (1) Reduces to Problem (4)

Definition

For any given ε > 0, x̄ is called an ε-KKT point of problem (4) if there exists

λ̄ ∈ R|K̂εx̄ | such that ∣∣λ̄maTm x̄
∣∣ ≤ εq, m ∈ K̂εx̄ (23)

and ∥∥∥∇L̂ε(x̄ , λ̄)
∥∥∥ ≤ ε, (24)

where

L̂ε(x , λ) =
∑
m∈Îεx̄

(−aTmx)q +
∑

m∈Ĵ εx̄

(aTmx)q + h(x) +
∑
m∈K̂εx̄

λm(b − Ax)m

with
Îεx̄ =

{
m | aTm x̄ < −ε

}
,

Ĵ εx̄ =
{

m | aTm x̄ > ε
}
,

K̂εx̄ =
{

m | − ε ≤ aTm x̄ ≤ ε
}
.
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Definition of ε-KKT Point for Problem (4)

Definition (Bian-Chen, 2014)

For any ε ∈ (0, 1], x̄ is called an ε-KKT point of problem (4) if it satisfies∥∥∥(Z ε
x̄ )T ∇F εx̄ (x̄)

∥∥∥
∞
≤ ε, (25)

where
F εx̄ (x) =

∑
|aTm x̄|>ε

∣∣aTmx
∣∣q + h(x)

and Z ε
x̄ is the matrix whose columns form an orthogonal basis for the null space of{

am |
∣∣aTm x̄

∣∣ ≤ ε} .
(23) and (24) =⇒ (25)

Shall talk more about the comparison later
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The SSQP Framework Returns An ε-KKT Point

Define
Iεx̄ = {m | (b − Ax̄)m < −ε}
J εx̄ = {m | (b − Ax̄)m > ε}
Kεx̄ = {m | − ε ≤ (b − Ax̄)m ≤ ε}

as in (22), and
λ̄m = [θq(t, ε)]′t=(b−Ax̄)m

, m ∈ Kεx̄ (26)

Theorem

For any ε ∈ (0, 1], let x̄ be the point returned by the proposed SSQP framework
and λ̄ be defined in (26). Then x̄ and λ̄ satisfy (20) and (21).
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Worst-Case Iteration Complexity

Theorem (L.-Ma-Dai-Zhang, 2014)

For any ε ∈ (0, 1], the total number of iterations for the SSQP framework to
return an ε-KKT point of problem (1) satisfying (20) and (21) is at most

O
(
εq−4

)
.

In particular, letting xk+1 be xproj
k+1, x snorm

k+1 , or xexact
k+1 in the proposed SSQP

framework, the total number of iterations for the framework to return an ε-KKT
point of problem (1) satisfying (20) and (21) is at most⌈

Jq
T ε

q−4
⌉
,

where Jq
T is given in (19).
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SSQP vs Existing Works

The SSQP algorithmic framework is designed for solving a more general and
difficult problem.

SSQP with xk+1 = xproj
k+1 vs SQR when applied to solve problem (4)

SQR [Bian-Chen, 2014] SSQP

complexity

iteration number O(ε−2) O(εq−4)

subproblem per iteration n-dimensional QP univariate QP

quality

optimality residual I
∥∥(Zεx̄ )T ∇F εx̄ (x̄)

∥∥
∞ ≤ ε

∥∥∇L̂ε(x̄, λ̄)
∥∥ ≤ ε

optimality residual II
∥∥∇F̃ (x̄, ε)

∥∥ = O
(
ε2−2/q

) ∥∥∇F̃ (x̄, ε)
∥∥ ≤ ε

complementary violation not guaranteed
∣∣λ̄ma

T
m x̄

∣∣ ≤ εq, m ∈ K̂εx̄
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Concluding Remarks

Polyhedral constrained composite Lq minimization

Applications from wireless communications and machine learning

Exact recovery result for JPAC

Computational intractbility

Optimality conditions

SSQP framework and iteration complexity analysis

Extend to matrix case
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Thank You!

Email: yafliu@lsec.cc.ac.cn
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