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Polyhedral Constrained Composite L, Minimization

@ Polyhedral constrained composite L, (0 < g < 1) minimization problem

min  F(x) := ||max {b — Ax,0}||? + h(x)
x€RV q (1)
st. xeX.

- A=Ja, a, ..., aM]T S RMXN, b= [by,bs, ..., bM]T e RV,
- h(x) : continuously differentiable satisfying
IVh(x) = Vh(Y)ll, < Lnllx = yll,, ¥V x,y € X;

- X C R": a general polyhedral set.
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. q
min [[max{b — Ax, 0}[g + h(x)

st. xeX.
- as g — 0, the above L, minimization problem approaches
i ax{b— Ax,0 h
min [max{b — Ax,0}lo + h(x)
st. xeX.
- as g — 1, the above L, minimization problem approaches
i ax{b— Ax,0 h
min [max{b — Ax, 0}, + h(x)

st. xe X.
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Motivated Applications

Related Works

@ Exact Recovery

Computational Complexity

Optimality Conditions

Algorithmic Framework & Analysis

@ Simulation Results (NOT Covered)
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Two MOTIVATED APPLICATIONS
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Wireless Communications

@ SINR at receiver k in the K-link SISO interference channel:

SINRy 1= —SMPk 5 k=1,2,...K
ngijJr??k
J#k
f_)k ZPkZ()« k:1721"'7K

- pxk : transmission power at transmitter k

- gk > 0: channel gain from transmitter j to receiver k
- 1k > 0 : noise power of link k

- vk > 0: SINR target of link k

- px > 0: power budget at transmitter k

6 /51
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Joint Power and Admission Control

@ Infeasibility issues of the linear system

SINR > v, Pk > px 20, k=1,2,....K

- mutual interference among different links

- individual power budget constraints
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Joint Power and Admission Control

@ Infeasibility issues of the linear system

SINR > v, Pk > px 20, k=1,2,....K

- mutual interference among different links

- individual power budget constraints

@ The admission control is necessary to determine the connections to be
rejected.
@ Joint power and admission control (JPAC):

- the admitted links should be satisfied with their required SINR targets
- the number of admitted (removed) links should be maximized (minimized)

- the total transmission power to support the admitted links should be minimized
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Normalized Channel

@ Two equivalent equations:

- power constraint: 0 < px < px < 0 < x := @ <1

Pk

- SINR constraint:

8kk Pk >y Xk

== =2 > >1
Z 8iiP; + Mk V8P Tk
j#k I 8kk Pk 8kk Pk

@ Normalized channel:

-
- noise vector b = (71111 , 7217_2 R 7K77_K ) >0
811P1 822p2 BKKPK

T
- power allocation vector x = g, ?, T P
p1 p2 Pk

- channel gain matrix A with its (k,j)-th entry
_’Ykgkjpf if k 75]’

ak = gkkPr
1, ifk=]j.
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Composite L, Minimization Formulation

@ Simple to check

8kk Pk

> guipi + i
7k

> <= (b—Ax)k <0
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Composite L, Minimization Formulation

@ Simple to check

8kk Pk

> guipi + i
7k

> <= (b—Ax)k <0

@ The JPAC problem can be formulated as [L.-Dai-Luo, 2013]

min [[max {b — Ax, 0}(|7 + pp" x @)

st. 0<x<e.
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Support Vector Machine: Linearly Separable Data

. M .
o Given a database {s, € RV, y,, e R} ~_, where sy, is called example and
¥m is the label associated with s,,.

e Find a linear discriminant function /(s) = 3" x with $ = [s7,1]7 € RV

- all data are correctly classified

- the margin of the hyperplane ¢ that separates the two classes is maximized

o If the data are linearly separable, the above problem can be formulated as
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Support Vector Machine: Not Linearly Separable Data

o Data are often NOT linearly separable in practice, and thus the above
problem is not feasible.

@ For the not linearly separable data, we can solve the following model instead:

m|n Zmax{l—yms X, O} g

I [
-

@ The above problem with g = 1 is called the soft-margin SVM in
[Cortes-Vapnik, 1995].
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RELATED WORKS
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Existing Works |

P
min 7 || Ax — blI? + [

- Lower bound theory [Chen-Xu-Ye, 2010]
- Strong NP-hardness [Chen-Ge-Wang-Ye, 2014]

- Iterative reweighted L; and L, minimization algorithms [Xu-Chang-Xu-Zhang,
2012; Lai-Xu-Yin, 2013;...]
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Existing Works |

P
min 7 || Ax — blI? + [

- Lower bound theory [Chen-Xu-Ye, 2010]

- Strong NP-hardness [Chen-Ge-Wang-Ye, 2014]

- Iterative reweighted L; and L, minimization algorithms [Xu-Chang-Xu-Zhang,
2012; Lai-Xu-Yin, 2013;...]

min ||XHZ st. Ax=0b
X

- Sufficient conditions in recovering the sparsest solution [Chartrand, 2007;
Chartrand-Staneva, 2008; Foucart-Lai, 2009]

- Strong NP-hardness and a potential reduction algorithm [Ge-Jiang-Ye, 2011]

- Iterative reweighted minimization methods [Chartrand-Yin, 2008; Daubechies
et al., 2010; ...]

- Extend to the matrix case [Ji-Sze-Zhou-So-Ye, 2013]

Ya-Feng Liu (LSEC ICMSEC AMSS CAS) Polyhedral Constrained Composite Lg Minimization Sept. 3, 2014, PKU 13 / 51



Existing Works [l

min h(x) + [1x| 3)

@ Smoothing quadratic regularization (SQR) algorithm and O(e~2) worst-case
iteration complexity analysis [Bian-Chen, 2013]

e First and second order interior-point methods, O(e~2) and O(e~3/2) iteration
complexity results [Bian-Chen-Ye, 2014]

@ Lower bound theory, iterative reweighted minimization methods, unified
global convergence analysis [Lv, 2012]
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Existing Works Il

mlnh +Z|a x|9 (4)

@ Second order necessary and sufficient conditions [Chen-Niu-Yuan, 2013]
@ Smoothing trust region Newton (STRN) method [Chen-Niu-Yuan, 2013]

e An SQR algorithm and O(e~2) iteration complexity analysis [Bian-Chen,
2014]

Ya-Feng Liu (LSEC ICMSEC AMSS CAS) Polyhedral Constrained Composite Lg Minimization Sept. 3, 2014, PKU 15 / 51



There Are More in This Workshop!

e “A Smoothing Majorization Method for ¢>-£, Matrix Minimization” [Zhang]
@ “An Improved Algorithm for the L,-L, Minimization Problem [Ge]

@ “p-Norm Constrained Quadratic Programming: Conic Approximation
Methods” [Xing]
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Some Remarks

@ The definitions of e-KKT points in the aforementioned works are different
and thus are not comparable to each other.
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@ The definitions of e-KKT points in the aforementioned works are different
and thus are not comparable to each other.

@ All of the aforementioned problems are special cases of problem (1).

@ All of the aforementioned problems are sparse optimization problem with
“equality constraints”.

@ Problem (1) is essentially a sparse optimization problem with “inequality
constraints” .

@ Many of the aforementioned algorithms cannot be used to solve problem (1).

o lterative reweighted minimization methods can be modified to solve problem

(1)-

@ However, the worst-case iteration complexity of all existing iterative
reweighted minimization methods remains unclear.
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Some Fundamental Questions

@ Polyhedral constrained composite L, minimization:

; q
min, [max{b — Ax, 0}, + h(x)

st. xe k.
@ Some fundamental questions that will be addressed in this talk:
Q1: Why use the non-convex L, minimization formulation? Is it better than the
corresponding convex L; counterpart? Can the solution of the L, minimization

solve the original Lo minimization problem?

Q2: Is it easy to solve? Is there any polynomial time algorithm which can solve it
to global optimality?

Q3: How to check a given point is a local minimizer or a stationary point of the
problem? What is the KKT optimality conditions?

Q4: Since the problem is non-convex, nonsmooth, and non-Lipschitz, how to solve
it efficiently with a worst-case iteration complexity guarantee?
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Q1: Why use the non-convex L, minimization formulation? Is it better than the
corresponding convex L; counterpart? Can the solution of the Ly minimization
solve the original Ly minimization problem?

ExAcT RECOVERY
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L1 vs Ly: A Toy Example

o Let A, b, p in the JPAC problem (2) be
1 0 -1
A= 0 1 -1 |, b=0be, p=ce.
-1 -1 1
@ The optimal solution to problem (2) with g =0'is

x* =(0.5,0.5,0)".

@ For any p > 0, x = 0 is the unique global minimizer of the L; minimization
problem.

@ For any given g € (0,1), if p satisfies
0 < p < pg:=min{l+(0.5)7,29} — (1.5)9,

then the unique global minimizer of the L, minimization problem (2) is x*.
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Why L; Does Not Work Well?

@ The problem of minimizing ||Ax — b||; is equivalent to the problem of
minimizing ||Ax — b||o with high probability under the assumptions that
[Candes-Tao, 2005]

1) the vector Ax — b at the true solution x* is sparse, where A € R™*" and
m > n; and

2) the entries of the matrix A is independent and identically distributed (i.i.d.)
Gaussian.

@ However, these two assumptions often do not hold true.

@ For instance, A in the JPAC problem has a special structure, i.e., all diagonal
entries are one and all non-diagonal entries are non-positive.
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Exact Recovery Result

Theorem (L.-Ma-Dai, 2013)

For any given instance of the JPAC problem (2), there exists g > 0 such that

when q € (0, @], the global solution to the L, minimization problem is one of the
optimal solutions to problem (2) with q = 0.

@ This result depends on the special structure of A and b.

@ Does this result hold true generally?

@ More works along this direction need to be done.
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Q2: Is the non-convex L, minimization problem easy to solve? Is there any
polynomial time algorithm which can solve it to global optimality?

COMPUTATIONAL COMPLEXITY
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Convexity vs Non-Convexity
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Convexity vs Non-Convexity

@ Two “easy” non-convex problems:
- ratio of quadratic functions over an ellipsoid [Beck-Teboulle, 2009; Xia, 2013]

. xTAix + bl x + 1
min
xeR xTAox + bl x +

s.t. ||A3X||2 < p-

- max-min fairness linear transceiver design for the SIMO interference channel
[L.-Hong-Dai, 2013]

max_ min |uzhkk|2pk
end k) o2 |uel2+ > Juf bl
j#k

s.t. 0<pe <px, k=1,2,....,K.
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Convexity vs Non-Convexity

@ Two “easy” non-convex problems:
- ratio of quadratic functions over an ellipsoid [Beck-Teboulle, 2009; Xia, 2013]

. xTAix + bl x + 1
min
xeR xTAox + bl x +

s.t. ||A3X||2 < p-

- max-min fairness linear transceiver design for the SIMO interference channel
[L.-Hong-Dai, 2013]

max_ min |uzhkk|2pk
end k) o2 |uel2+ > Juf bl
j#k

s.t. 0<pe <px, k=1,2,....,K.

@ Complexity theory: a robust tool to characterize the computational
tractability of an optimization problem
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Complexity Results

Theorem (L.-Ma-Dai-Zhang, 2014)

For any given 0 < g < 1, the unconstrained minimization
min || max {b — Ax, 0} ||
X

is strongly NP-hard, and hence so is the polyhedral constrained L, minimization
problem (1).

Ya-Feng Liu (LSEC ICMSEC AMSS CAS) Polyhedral Constrained Composite Lg Minimization Sept. 3, 2014, PKU 25 / 51



Complexity Results

Theorem (L.-Ma-Dai-Zhang, 2014)

For any given 0 < g < 1, the unconstrained minimization

mXin | max {b — Ax,0} ||3

is strongly NP-hard, and hence so is the polyhedral constrained L, minimization
problem (1).

= Find high quality approximate solutions or locally optimal solutions in
polynomial time
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Q3: How to check a given point is a local minimizer or a stationary point of the
composite Ly minimization problem? What is the KKT optimality conditions?

OPTIMALITY CONDITIONS
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An Auxiliary Smooth Problem

@ Original nonsmooth non-Lipschitzian problem

min  ||max{b — Ax, 0}||Z + h(x)
st. xe X.

@ For any given X, construct an auxiliary smooth problem

min Z (b— Ax)3 + h(x)

X

s.t. FIJE\ZXAX)m <0, me Kx, (5)
x e X.
with
Ix = {m|(b—AX)m <0},
Jz = {m|(b—AX)m >0}, (6)
Ky = {m]|(b— Ax)n=0}.
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Key Connections

@ Some observations

- The objective value of problem (5) is equal to that of problem (1) at point X.

- The objective function of problem (5) is continuously differentiable in the
neighborhood of point x.
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Key Connections

@ Some observations

- The objective value of problem (5) is equal to that of problem (1) at point X.
- The objective function of problem (5) is continuously differentiable in the
neighborhood of point x.

@ Equivalence of problems (1) and (5) in the sense of sharing the same local
minimizers

X is a local minimizer of problem (1) if any only if it is a local minimizer of
problem (5) with Jx and KCx given in (6).
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Optimality Conditions

@ First order optimality conditions

Theorem (L.-Ma-Dai-Zhang, 2014)

If X € X is a local minimizer of problem (1), there must exist \ > 0 € RI*s| such
that

Am(b— AX)m =0, ¥V m € Kx (7)
and
X — Py (x — VL(xX,))) =0, (8)

where

Lo A) = > (b= Ax)L + h(x) + > An(b— AX)m,

meJx mekx

and Jx and Kx are defined in (6).

@ Second order optimality conditions (skipped)
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KKT Condition of Problem (3)

Definition (Chen-Xu-Ye, 2010; Ge-Jiang-Ye, 2011; Bian-Chen, 2013,
2014)

X is called a KKT point of problem
min h(x) + ||

if it satisfies ~
qlx|? + XVh(x) =0, 9)

where [x|7 = (%9, ..., |%n|9)" and X = diag (%1, ..., %n).
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KKT Condition of Problem (4)

Definition (Chen-Niu-Yuan, 2013)

X is called a KKT point of problem

mlnh +Z|a x|9

if it satisfies
ZI V(%) =0, (10)
where

F(x) = Z ’a x| + h(x)

al x#0

and Zx is the matrix whose columns form an orthogonal basis for the null space of
{am|alx=0}.

4
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Equivalence of Different Definitions

Proposition

When problem (1) reduces to problem (4), there holds
(7) and (8) < (10);

When problem (1) reduces to problem (3), there holds

(7) and (8) <= (9).
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Q4: Since problem (1) is non-convex, nonsmooth, and non-Lipschitz, how to solve
it efficiently with a worst-case iteration complexity guarantee?

AN SSQP FRAMEWORK & ANALYSIS
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Challenges

@ Two challenges of smoothing algorithms

- How to choose a smoothing function and an algorithm for the smoothing

problem?
- How to update the smoothing parameter?
@ Both the choice of smoothing functions and the updating rule of the

smoothing parameter play a key role in convergence and iteration complexity
analysis of the smoothing algorithms.

Sept. 3, 2014, PKU 34 /51
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Smoothing Approximation®

o Use
t, if t>pu;
2w .
O(t,p) = 2u+§v ifo<t<u
g, ift<0

to approximate
0(t) = max {t,0}.

@ Approximation properties
- O(t,p)=0(t), Vt>p
- a(tal'b) 2 g: vt

- 09(t, u) is continuously differentiable

IThanks Prof. Xiaojun Chen for the discussion on the choice of the smoothing
function.
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Smoothing Problem

o Define F(x,p) = f(x, p) + h(x), where f(x, 1) = > mem 09((b — AX) m, 1),
then

FO) < Fom) <F)+ (g)q v x.
(b—A)m<p

@ Smoothing problem:

min  F(x,p) = 09((b — AX)m, 1) + h(x)
i Flon= 2 g (11)
st. xeX

Ya-Feng Liu (LSEC ICMSEC AMSS CAS) Polyhedral Constrained Composite Lg Minimization Sept. 3, 2014, PKU 36 /51



Smoothing Problem

o Define F(x,p) = f(x, p) + h(x), where f(x, 1) = > mem 09((b — AX) m, 1),
then

FO) < Fom) <F)+ (g)q v x.
(b—Ax)m<p

@ Smoothing problem:

min  F(x,p) = 09((b — AX)m, 1) + h(x)
i Flon= 2 g (11)
st. xeX

For any q € (0,1) and p > 0, the smoothing approximation problem (11) is
strongly NP-hard (even for the special case when h(x) =0 and X =RN).
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Local Convex Quadratic Upper Bound

@ A local convex quadratic upper bound at point xx
QUx, X, i) = Qu(x, Xk, ) + QX Xx) (12)

= Qi xk; 1) = F i, 1) + V(o 1) T (x = i) + %(X — k) " B (i, 1) (x — )

- Blxow) = 3 w((b— AX)m, p)amal
meM

- Qaix k) = hlxk) + (k) (x — ) + 5 Lllx — P
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Local QP Upper Bound of l:_(x,u)

Lemma (A Local QP Upper Bound of Smoothing Function F(x, 1))

For any xi and x such that

(Alxk = x)),, < p, meZIl

Xk ?

—(b—AXk)m
(Alxk = X)), = — 5 M€ I
where
¢ = {m](b—Ax),, < —u},
jx’: = {m| (b - AXk)m > 2:“‘})
then

F(X7 ,U/) S Q(Xa Xk ,U/),
where Q(x, Xk, 1) is defined in (12).
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An SSQP Framework

@ Update rule of the smoothing parameter: if x; satisfies
HPX (xk —VF (xk,/z,)> — ka < u, (13)

set
W= 0op, Xo= Xk, k=0;

else compute the next point xy1.

@ Algorithmic framework for solving the smoothing problem: let x,,1 be an
(approximate) solution of the following convex QP

min  Q(x, Xk, 1t)

xeX
st (AGx —x)),, < p, meTl, (14)
(b — Axk)
(Al = X))y 2 =, me T

such that ; )
F(xie, 1) = F(xkp1, 1) = O(p*9).

@ Termination criterion: the above procedure is repeated until z < e and (13)
is satisfied.
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Some Remarks

@ Flexible to choose subroutines for solving problem (14)

@ Can deal with the case where Lj is unknown
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Existence of x,.1 : A Shrink Projection Gradient Step

Lemma

For any 1 € (0,1] and k > 0 in the proposed SSQP framework,

Xff‘{ = ¢ 4= fkadka (15)
where
— T =
6 — min deVF(XkyU) b = K <1,
Td] (Bk + Lh/N) dk (maxm {ljam[[} +1) lldl
and

dk = Px(Xk - VF_(Xk,/J)) — Xk-
If (13) is not satisfied, then

F(xe, 1) = FOET, 1) = 179/ J, (16)

where Jo = max {8q Y, [|lam||* + 2Lp, 2 maxy, {||am||} + 2} .
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Existence of x,.1 : Many Other Choices

Lemma

For any p € (0,1] and k > 0 in the proposed SSQP framework, suppose that

- X" is the solution of problem (14),

- x1%™ is the solution of the following problem

min - Q(x, i )
st [JA(x = xi)llo < pe

If (13) is not satisfied, then

F(xie ) — FOEE 1) = F (e, 1) — FOE™, 1) = F (i, ) — FOE, ). (17)
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Iteration Complexity

Let xx11 = ka in the proposed SSQP framework. Then, for any € € (0, 1], the
framework will terminate within at most

[J3e97 (18)

iterations, where

oI~ 4( (x0, )J0+1)
J9 = . (19)
I od—4—1

V.
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Iteration Complexity

Theorem

Let xx11 = ka in the proposed SSQP framework. Then, for any € € (0, 1], the
framework will terminate within at most

[J3e97 (18)
iterations, where
594 ( (x0,1)Jo + 1)

q _
i = od—4—1

(19)

V.

@ The worst-case iteration complexity function in (18) is a strictly decreasing
function with respect to g € (0, 1) for fixed € € (0,1).

@ This is consistent with the intuition that problem (1) becomes more difficult
to solve as g decreases.
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e-KKT Point: A Perturbation of the KKT Point

Definition (L.-Ma-Dai-Zhang, 2014)

For any given e > 0, x € X is called an e-KKT point of problem (1) if there exists
A >0 € RI®: such that

|Am(b— AR)m| < €9, me KS (20)
and ~
[% — Px (X = VL(x,A) || < (21)
where
LG, A) = Y (b= Ax), + > An(b— AX)m
meJs meKs
with
Iy = {m|(b—AX)m < —¢},
Ji = {m|(b— AX)m > €}, (22)
K¢ = {m|—e<(b—AX)m<e}.
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When Problem (1) Reduces to Problem (4)

Definition

For any given € > 0, x is called an e-KKT point of problem (4) if there exists

e R"ez‘ such that

and

with

D (=alx) 7+ > @)+ () + D Am(b— Ax)m

(23)

HVZE(XX)H <e (24)

meJs meks
= {m|alx < —€},

= {m|alx> e},

= {m|—e<alx<e}.
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Definition of e-KKT Point for Problem (4)

Definition (Bian-Chen, 2014)

For any € € (0,1], X is called an e-KKT point of problem (4) if it satisfies

@ vEE|_ <. (25)

oo

where

Fi) = > amx|® + h(x)

laTx|>e€

and Zg is the matrix whose columns form an orthogonal basis for the null space of
{am| |alx| <€} .

V.

e (23) and (24) = (25)

@ Shall talk more about the comparison later
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The SSQP Framework Returns An e-KKT Point

@ Define
e = {m|(b—AX)m < —€}
¢ = {m[(b—AR)m> €}
K = {m| —e<(b—AX)n < €}
as in (22), and
Am = [09(¢, 6)];:(b7A>'<)m , me Kg (26)

For any e € (0,1], let X be the point returned by the proposed SSQP framework
and X\ be defined in (26). Then X and X satisfy (20) and (21).
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Worst-Case Iteration Complexity

Theorem (L.-Ma-Dai-Zhang, 2014)

For any € € (0, 1], the total number of iterations for the SSQP framework to
return an e-KKT point of problem (1) satisfying (20) and (21) is at most

o (eq_4) .
In particular, letting xy 1 be xff{, X, or x23t* in the proposed SSQP
framework, the total number of iterations for the framework to return an e-KKT
point of problem (1) satisfying (20) and (21) is at most

e,

where J3 is given in (19).
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SSQP vs Existing Works

@ The SSQP algorithmic framework is designed for solving a more general and
difficult problem.
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SSQP vs Existing Works

@ The SSQP algorithmic framework is designed for solving a more general and
difficult problem.

@ SSQP with x,1 = X,fﬂ vs SQR when applied to solve problem (4)

SQR [Bian-Chen, 2014] SSQP
iteration number 0(e7?) O(e"™%)
complexity subproblem per iteration n-dimensional QP univariate QP
optimality residual | (Z)T VE ()|, <e VL (%, 2| < e
quality

optimality residual Il

[VF .9 = 0 (¢727)

||VI-_()_<, e)H <e

complementary violation

not guaranteed

[Rmal| < ¢, m € K
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Concluding Remarks

@ Polyhedral constrained composite L, minimization
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Concluding Remarks

Polyhedral constrained composite L, minimization

Applications from wireless communications and machine learning

o Exact recovery result for JPAC

Computational intractbility

Optimality conditions
@ SSQP framework and iteration complexity analysis

Extend to matrix case
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Thank Youl

Email: yafliu@lsec.cc.ac.cn
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