

# An Efficient Gauss-Newton Algorithm for Symmetric Low-Rank Product Matrix Approximations

### Xin Liu

State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences, China

(Joint work with Zaiwen Wen<sup>1</sup>, Yin Zhang<sup>2</sup>)

2014 Workshop on Optimization for Modern Computation, BICMR, Peking University September 3, 2014

<sup>1</sup>Peking University, China <sup>2</sup>Rice University, U.S.

Xin Liu (AMSS)

**Low-rank approximation**: given  $B \in \mathbb{R}^{n \times m}$  and  $k < \min(n, m)$ ,

$$\min_{X,Z} \left\{ \|XZ^{\mathsf{T}} - B\|_{\mathsf{F}} : X \in \mathbb{R}^{n \times k}, Z \in \mathbb{R}^{m \times k} \right\}$$

### **Closely related to SVD**

- k-Dominant (k-D) SVD of  $n \times m \Rightarrow$  solution
- Solution + QR( $n \times k$ ) and SVD ( $k \times k$ )  $\Rightarrow$  k-D SVD of  $n \times m$

How about the symmetric case? for  $A = A^{T} \in \mathbb{R}^{n \times n}$  (e.g.,  $A = BB^{T}$ ),

$$\min_{X} \left\{ \|XX^{\mathsf{T}} - A\|_{\mathsf{F}} : X \in \mathbb{R}^{n \times k} \right\}$$

### A nonlinear, nonconvex least squares problem

$$\min_{X\in\mathbb{R}^{n\times k}} \|XX^{\mathsf{T}} - A\|_{\mathsf{F}}^2$$

## Fundamental in low-rank matrix approximations

• Principal subspace of A:

 $\operatorname{span}(X^*) = \operatorname{span}\{q_1, q_2, \ldots, q_k\}$ 

where  $X^*$  is a global minimizer, and  $\{q_j\}_{j=1}^k$  are k dominant eigenvectors of A.

• For  $A = BB^{T}$ , columns of X are "principal components" of B.

Why not just call eigs (or svds) in MATLAB? (ARPACK)

Why not use one of the existing eigensolvers?

Emerging applications demand new capacities.

- high efficiency at moderate accuracy
- high eigenspace dimensions
- high parallel scalability
- warm-start capacity

Established eigensolvers often lack in one or more aspects.

Advanced scientific computing and evolving computer archtectures call for new algorithms (either of general or special purpose).

# **Block Methods**

Block vs. Sequential (Lanczos-type Methods)

- Block SpMV:  $AV = [Av_1 Av_2 \cdots Av_k]$
- Sequential SpMv's:  $Av \rightarrow A^2 v \cdots \rightarrow A^k v$ (+ inner products for orthogonalization)

As k increases, block methods are gaining advantages.

Block methods can be warm-started in an iterative setting.

Classic Block Method SSI: (power method)

 $X^{i+1} = orth(AX^i)$ 

Other block algorithms:

- Block Jacobian-Davidson: Feast
- Trace minimization: LOBPCG, LMSVD

Research on block methods seems still largely unsettled.

#### **Trace Minimization**

$$\max_{X\in\mathbb{R}^{n\times k}} \operatorname{tr}(X^{\mathsf{T}}AX) \quad \text{s.t.} \quad X^{\mathsf{T}}X = I.$$

 L.-Wen-Zhang, Limited Memory Block Krylov Subspace Optimization for Computing Dominant Singular Value Decompositions, SIAM Journal on Scientific Computing, 35-3(2013);

•  $A := BB^{\mathsf{T}}$ , main iteration of LMSVD:  $X^{(i+1)} = \operatorname{orth}(AY^{(i)})$ , where  $Y^{(i)} = \operatorname{argmax} \{\phi(X) \mid X^{\mathsf{T}}X = I, X \in S_k\}$ ,  $S_k = \operatorname{span} \{X_k, X_{k-1}, ..., X_{k-p}\}$ ;

• LMSVD code is available at MathWorks (Google: LMSVD).

### Two main types of operations: AX & RR/orth

As k increases,  $AX \ll RR/orth \longrightarrow$  bottleneck

### **Parallel Scalability**

- $AX \longrightarrow Ax_1 \cup Ax_2 \cup ... \cup Ax_k$ . Higher.
- RR/orth inherits sequentiality. Lower.

# Avoid bottleneck?

Do less RR/orth

# No free lunch?

• Do more BLAS3 (higher scalability than AX)

# **Orthogonal Free Models**

**Unconstrained Model:**  $\min_{X \in \mathbb{R}^{n \times k}} \frac{1}{4} ||X^T X||_F^2 + \frac{1}{2} \operatorname{tr}(X^T A X)$ , *Dai-Jiang-Cui*, 2013 **Trace-penalty Minimization** 

$$\min_{X\in\mathbb{R}^{n\times k}}f(X):=\frac{1}{2}\mathrm{tr}(X^{\mathsf{T}}AX)+\frac{\mu}{4}\|X^{\mathsf{T}}X-I\|_{\mathsf{F}}^{2}.$$

EIGPEN, Wen-Yang-L.-Zhang, 2013, available at "optimization online"

### **Good properties:**

- Equivalence to Trace Minimization does NOT require  $\mu \to \infty$
- No non-global local minimizer, less undesired saddle point
- RR/Orth mostly replaced by "big" BLAS3
- Efficient for moderate accuracy, numerically stable
- Parallel scalability appears promising

# Algorithm

- Gradient method with Barzilai Borwein stepsize
- Rayleigh-Ritz restart

Xin Liu (AMSS)

# Why New Approach?

# **Questions to EIGPEN**

- Gradient method + BB (How about high-order methods?)
- Condition number: k = 1:  $\kappa(\nabla^2 f_{\mu}(\hat{X})) = \frac{\lambda_n \lambda_1}{\lambda_2 \lambda_1}$ ; k > 1:

 $\kappa(
abla^2 f_{\mu}(\hat{X})) = 0$ , (How about linear convergence rate?)

$$\kappa\left(\nabla^{2} f_{\mu}(\hat{X}) \left|_{Q_{k}^{\perp}}\right) \triangleq \frac{\max_{S \in \mathbb{R}^{n \times k}} \left\{ \operatorname{tr}(S^{\mathsf{T}} \nabla^{2} f_{\mu}(\hat{X})(S)) : \operatorname{tr}(S^{\mathsf{T}}S) = 1, S^{\mathsf{T}}Q_{k} = 0 \right\}}{\min_{S \in \mathbb{R}^{n \times k}} \left\{ \operatorname{tr}(S^{\mathsf{T}} \nabla^{2} f_{\mu}(\hat{X})(S)) : \operatorname{tr}(S^{\mathsf{T}}S) = 1, S^{\mathsf{T}}Q_{k} = 0 \right\}}$$
$$= \frac{\lambda_{n} - \lambda_{1}}{\lambda_{k+1} - \lambda_{k}}. \qquad (\mathsf{Explain why RR restart is useful.})$$

μ should be tuned in properly. (How to avoid μ?)

### Solution

**SLRP:** 
$$\min_{X \in \mathbb{R}^{n \times k}} ||XX^{\mathsf{T}} - A||_{\mathsf{F}}^2$$

• Let eigenvalues of A be in a descending order

 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ 

• Eigenvalue decomposition:

 $A = Q_n \Lambda_n Q_n^{\mathsf{T}}, \quad Q_n^{\mathsf{T}} Q_n = I, \quad \Lambda_n \text{ diagonal}$ 

• *k*-D principal eigenspace:

 $\operatorname{span}(Q_k) \triangleq \operatorname{span}\{q_1, q_2, \ldots, q_k\}$ 

• k-D principal eigenpair:  $(Q_k, \Lambda_k)$ 

#### Equivalence

Assume that  $A = A^T \in \mathbb{R}^{n \times n}$  such that  $\lambda_k \ge 0$ . Then  $X \in \mathbb{R}^{n \times k}$  is a solution to min  $||XX^T - A||_F^2$  if and only if it has SVD:

$$X = Q_k \Lambda_k^{\frac{1}{2}} V^{\mathsf{T}},$$

where  $(Q_k, \Lambda_k)$  is a *k*-D principal eigenpair of  $A, V \in \mathbb{R}^{k \times k}$  is orthogonal but otherwise arbitrary.

1st-order condition for SLRP:

 $AX = X(X^{\mathsf{T}}X)$ 

Stationary points span invariant subspaces.

|  | Xin | Liu | (AMS | S |
|--|-----|-----|------|---|
|--|-----|-----|------|---|

Nonlinear Least Squares Model:

$$\min_{x\in\mathbb{R}^n} f(x) \triangleq \frac{1}{2} r(x)^T r(x). \qquad r(x): \mathbb{R}^n \to \mathbb{R}^m.$$

Linearize:  $r(x + s) \approx r(x) + J(x)s$ , where J(x) is the Jacobian.

Normal equations + Line Search: (minimize the lienar approximation)

$$J(x)^{\mathsf{T}}J(x)s = -J(x)^{\mathsf{T}}r(x).$$
  $x = x + \alpha s.$ 

Some properties:

- Fast for small residual. Slow for large residual.
- Local convergence may require  $\alpha < 1$  all the time.

### SLRP: Nonlinear Least Squares Model

$$\min_{X\in\mathbb{R}^{n\times k}} f(X) \triangleq \frac{1}{2} ||R(X)||_{\mathsf{F}}^2, \qquad R(X) \triangleq XX^{\mathsf{T}} - \mathsf{A}.$$

Let  $J(X) : \mathbb{R}^{n \times k} \to \mathbb{R}^{n \times n}$  be the Jacobian operator of R(X) at X.

**Normal equations:** (size  $nk \times nk$ )

$$J(X)^{\mathsf{T}}J(X)(S) = -J(X)^{\mathsf{T}}(R(X)).$$

Infinitely many solutions since J(X) is rank deficient.

Special structure of normal equations allows low-cost solution:

$$SX^{\mathsf{T}}X + XS^{\mathsf{T}}X = AX - X(X^{\mathsf{T}}X)$$

### **GN** Direction

Let  $X \in \mathbb{R}^{n \times k}$  be full rank, and  $\mathcal{P}_X = X(X^T X)^{-1} X^T$ . Then

$$S_C = \left(I - \frac{1}{2}\mathcal{P}_X\right) \left(AX(X^TX)^{-1} - X\right) + XC,$$

where  $C^{T} = -C$ , satisfies the normal equations. In particular, for C = 0,

$$S_0 = \left(I - \frac{1}{2}\mathcal{P}_X\right) \left(AX(X^{\mathsf{T}}X)^{-1} - X\right)$$

is a minimum weighted-norm Gauss-Newton direction at X.

Xin Liu (AMSS)

日本・モン・モン

### Gauss-Newton (GN):

- While not "converged", do
  - **1** If  $\sigma_{\min}(X) < \delta$ , set X = X + P; Correction Step
  - Select  $\alpha = \min(1, \sigma_{\min}^3(X)/||\nabla f(X)||_{\mathsf{F}})$ , set  $X = X + \alpha S_0$ .

# Calculation GN step:

- $Y = X(X^T X)^{-1}, G = AY X$
- $S_0 = G X(Y^TG)/2$

## **Computational cost:**

- 1 block SpMV: AY
- 3 dense matrix multiplications
- 1  $k \times k$  linear system with *n* rhs

So far, in practice

- $\alpha = 1$  appears always to work well;
- Correction step can hardly be invoked.

[X,Y]=GN(A,X)

• While not "converged", do

$$Y = X(X^{\mathsf{T}}X)^{-1}$$

$$X = AY - X(Y^T AY - I)/2$$

# Simple Algorithm

- Two-liner with no parameters
- No orthogonalization
- No Rayleigh-Ritz (unless eigenpairs are required)

# Step Size and Correction Step

**Full Rankness:** 
$$\sigma_{\min}(X^{i+1}) \ge 0.75 \, \sigma_{\min}(X^i)$$

### **Correction Step:**

• 
$$\delta \leq \left(\frac{\lambda_n/\lambda_1}{4+\sqrt{20}}\right)\sqrt{\frac{\lambda_n}{k}}$$
  
•  $X_c = X + P$  (:=  $\sqrt{\frac{\lambda_n}{p}} UV_p^T$ , where  $U^T X = 0$  and  $U^T U = I$ )

Key properties:

• 
$$\sigma_{\min}(X_c) \geq \delta$$

• 
$$f(X_c) < f(X) - \frac{1}{4}\lambda_n^2$$

A 1

# Theorem (Global Convergence)

Suppose that A > 0. Let  $\{X^i\}$  be generated by SLRPGN(TH) starting from a full-rank initial point. Then after finite number of iterations, step-size  $\alpha = 1$  will always be taken, no more correction step, and  $\nabla f(X_i) \rightarrow 0$ .

f(X) does not have any local (non-global) minimum. It is unlikely that the iterates get trapped at a saddle point. Better local convergence result holds if we further assume  $\lambda_k > \lambda_{k+1}$ .

### Theorem (Q-Linear Rate)

Suppose A > 0 and  $\lambda_k > \lambda_{k+1}$ . Then  $\{X^i\}$ , a sequence generated by SLRPGN(PR) starting from a full-rank initial point  $X^0 \in \mathcal{L}(\underline{\gamma})$ , globally converges to  $\mathcal{L}(f^*)$ , where  $\mathcal{L}(\gamma) := \{X \mid f(X) \le \gamma\}$  denotes the level set,  $f^*$  denotes the global minimum of SLRP and  $\underline{\gamma} > f^*$  is a constant. Moreover, the gradient sequence  $\{\nabla f(X^i)\}$  converges to zero at a Q-linear rate  $\frac{\lambda_{k+1}}{\lambda_k}$ .

# Low-rank Approximation without SVD

Recall for  $B \in \mathbb{R}^{n \times m}$ ,

$$\min_{X,Z} \left\{ \|XZ^{\mathsf{T}} - B\|_{\mathsf{F}} : X \in \mathbb{R}^{n \times k}, Z \in \mathbb{R}^{m \times k} \right\}$$

SVD:

$$XZ^{\mathsf{T}} = (U_k \Sigma_k) V_k^{\mathsf{T}},$$

which is the principal part of  $B = U \Sigma V^{T}$ .

GN:

• 
$$A = @(X)B * (B' * X);$$

• 
$$[X, Y] = SLRPGN(A, X);$$

• 
$$Z^{\mathsf{T}} = Y^{\mathsf{T}}B$$

### Platform

All the experiments were preformed on a linux workstation with 2 Intel Xeon E5-2697 CPUs (2.70GHz, 12 cores) and 128GB of memory running Ubuntu 12.04 and MATLAB 2013b.

#### **Tested Methods**

- MATLAB EIGS Lanczos-based (ARPACK, Sorensen et.al.)
- LANSVD Lanczos-based (PROPACK, R. M. Larsen)
- LMSVD block subspace method (L.-Wen-Zhang, SISC, 2013)
- SLRPBB BB + gradient (EIGPEN) (Wen-Yang-L.-Zhang)
- SLRPGN proposed GN algorithm

#### **Required Accuracy: moderate**

# Comparison Between BB and GN



(SLRPBB and SLRPGN with varying number of computed singular values on the random example "randcolu", size:  $10000 \times 10000$ , tol =  $10^{-4}$ )

# Comparison Between BB and GN (Cont'd)



Xin Liu (AMSS)

### **Robust Principal Component Analysis**

Data matrix is

$$M = L_0 + S_0 + \omega \in \mathbb{R}^{m \times n},$$

where  $L_0$  is low-rank,  $S_0$  is sparse and  $\omega$  is small noise.

Given *M*, find  $L_0$  and  $S_0$  approximately by solving:

$$\min_{L,S} \|L\|_* + \mu \|S\|_1, \text{ s.t. } L + S = M.$$

### MATLAB Code: IALM (Lin et al)

- Alternating Direction Multiplier Method (ADMM)
- Calls SVD at every iteration (warm-start desired)
- Test cases: random instances



### **CPU** Time in Seconds

### (All achieved similar accuracy)

| Xin L | _iu ( | (AM | SS) |
|-------|-------|-----|-----|
|       |       |     |     |

A B + A B +

< 口 > < 同 >

#### Find a low-rank matrix from a sampled set of its entries

Given the entries of  $M + \omega$  in  $\Omega$ , find  $X \approx M$  by solving:

$$\min_{X} \|X\|_*, \text{ s.t. } X_{ij} = M_{ij}, \forall (i, j) \in \Omega.$$

### MATLAB Code: SVT and NNLS

- Singular Value Thresholding
- Calls SVD at every iteration (warm-start desired)
- Test cases: random instances



#### **CPU** Time in Seconds

(All achieved similar accuracy)

Xin Liu (AMSS)

SLRPGN

3 September 3, 2014 26/29

47 ▶

∃ ▶



#### (All achieved similar accuracy)

<sup>3</sup>The sparse-dense matrix multiplication uses MKL

Xin Liu (AMSS)

.⊒ . ►

**SLRP:** min  $||XX^{T} - A||_{F}^{2}$ . Output (X, Y)**GN:**  $Y = X(X^{T}X)^{-1}$ ;  $X = AY - X(Y^{T}AY - I)/2$ 

- SLRPGN: simple and parameter-free
- Principal subspace without SVD, nor Rayleigh-Ritz
- Benefit of concurrency already seen in plain MATLAB
- Global convergence and local Q-linear convergence rate
- Effective for small residuals and low-moderate accuracy (so far)

#### **Further Works**

- Strategically placed Rayleigh-Ritz will improve accuracy
- Other eigen-techniques (poly-filtering, deflation, ...) help too
- SLRPGN + (a few RR): Potential as eigensolver worth investigating
- Parallel scalability to be exploited



# Thank you for your attention!

