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Accuracy:

The fidelity to the original model.
Able to solve a subproblem EXACTLY.
Maintain the convergence (or faster convergence) of an algorithm.

Implementability:

Easy to solve a subproblem
Ready for coding

They are both important (I hope you also agree).

Yet, they are usually conflicted (to be proved later).

Xiaoming Yuan (HKBU) Accuracy v.s. Implementability in Optimization September 02, 2014 4 / 37



Backgrounds 2014 Workshop on Optimization for Modern Computation, Peking Univesity

A Canonical Convex Optimization Model

A canonical convex minimization model with linear constraints:

min{θ(x) | Ax = b, x ∈ X},

with A ∈ ℜm×n, b ∈ ℜm, X ⊆ ℜn a closed convex set, θ : ℜn → ℜ a
convex but not necessarily smooth function.

Xiaoming Yuan (HKBU) Accuracy v.s. Implementability in Optimization September 02, 2014 5 / 37



Backgrounds 2014 Workshop on Optimization for Modern Computation, Peking Univesity

A Canonical Convex Optimization Model

A canonical convex minimization model with linear constraints:

min{θ(x) | Ax = b, x ∈ X},

with A ∈ ℜm×n, b ∈ ℜm, X ⊆ ℜn a closed convex set, θ : ℜn → ℜ a
convex but not necessarily smooth function.
Solving the original model — thus with 100% accuracy.

Xiaoming Yuan (HKBU) Accuracy v.s. Implementability in Optimization September 02, 2014 5 / 37



Backgrounds 2014 Workshop on Optimization for Modern Computation, Peking Univesity

A Canonical Convex Optimization Model

A canonical convex minimization model with linear constraints:

min{θ(x) | Ax = b, x ∈ X},

with A ∈ ℜm×n, b ∈ ℜm, X ⊆ ℜn a closed convex set, θ : ℜn → ℜ a
convex but not necessarily smooth function.
Solving the original model — thus with 100% accuracy. But how?

Xiaoming Yuan (HKBU) Accuracy v.s. Implementability in Optimization September 02, 2014 5 / 37



Backgrounds 2014 Workshop on Optimization for Modern Computation, Peking Univesity

A Canonical Convex Optimization Model

A canonical convex minimization model with linear constraints:

min{θ(x) | Ax = b, x ∈ X},

with A ∈ ℜm×n, b ∈ ℜm, X ⊆ ℜn a closed convex set, θ : ℜn → ℜ a
convex but not necessarily smooth function.
Solving the original model — thus with 100% accuracy. But how?
— in general, not possible.

Xiaoming Yuan (HKBU) Accuracy v.s. Implementability in Optimization September 02, 2014 5 / 37



Backgrounds 2014 Workshop on Optimization for Modern Computation, Peking Univesity

A Canonical Convex Optimization Model

A canonical convex minimization model with linear constraints:

min{θ(x) | Ax = b, x ∈ X},

with A ∈ ℜm×n, b ∈ ℜm, X ⊆ ℜn a closed convex set, θ : ℜn → ℜ a
convex but not necessarily smooth function.
Solving the original model — thus with 100% accuracy. But how?
— in general, not possible. — not implementable.

Xiaoming Yuan (HKBU) Accuracy v.s. Implementability in Optimization September 02, 2014 5 / 37



Backgrounds 2014 Workshop on Optimization for Modern Computation, Peking Univesity

A Canonical Convex Optimization Model

A canonical convex minimization model with linear constraints:

min{θ(x) | Ax = b, x ∈ X},

with A ∈ ℜm×n, b ∈ ℜm, X ⊆ ℜn a closed convex set, θ : ℜn → ℜ a
convex but not necessarily smooth function.
Solving the original model — thus with 100% accuracy. But how?
— in general, not possible. — not implementable.
The penalty method:

xk+1 = arg min
{

θ(x) +
β

2
‖Ax − b‖2

∣

∣ x ∈ X
}

which solves an easier problem without linear constraints

Xiaoming Yuan (HKBU) Accuracy v.s. Implementability in Optimization September 02, 2014 5 / 37



Backgrounds 2014 Workshop on Optimization for Modern Computation, Peking Univesity

A Canonical Convex Optimization Model

A canonical convex minimization model with linear constraints:

min{θ(x) | Ax = b, x ∈ X},

with A ∈ ℜm×n, b ∈ ℜm, X ⊆ ℜn a closed convex set, θ : ℜn → ℜ a
convex but not necessarily smooth function.
Solving the original model — thus with 100% accuracy. But how?
— in general, not possible. — not implementable.
The penalty method:

xk+1 = arg min
{

θ(x) +
β

2
‖Ax − b‖2

∣

∣ x ∈ X
}

which solves an easier problem without linear constraints — with
much more implementability.

Xiaoming Yuan (HKBU) Accuracy v.s. Implementability in Optimization September 02, 2014 5 / 37



Backgrounds 2014 Workshop on Optimization for Modern Computation, Peking Univesity

A Canonical Convex Optimization Model

A canonical convex minimization model with linear constraints:

min{θ(x) | Ax = b, x ∈ X},

with A ∈ ℜm×n, b ∈ ℜm, X ⊆ ℜn a closed convex set, θ : ℜn → ℜ a
convex but not necessarily smooth function.
Solving the original model — thus with 100% accuracy. But how?
— in general, not possible. — not implementable.
The penalty method:

xk+1 = arg min
{

θ(x) +
β

2
‖Ax − b‖2

∣

∣ x ∈ X
}

which solves an easier problem without linear constraints — with
much more implementability.
Of course, with much less accuracy

Xiaoming Yuan (HKBU) Accuracy v.s. Implementability in Optimization September 02, 2014 5 / 37



Backgrounds 2014 Workshop on Optimization for Modern Computation, Peking Univesity

A Canonical Convex Optimization Model

A canonical convex minimization model with linear constraints:

min{θ(x) | Ax = b, x ∈ X},

with A ∈ ℜm×n, b ∈ ℜm, X ⊆ ℜn a closed convex set, θ : ℜn → ℜ a
convex but not necessarily smooth function.
Solving the original model — thus with 100% accuracy. But how?
— in general, not possible. — not implementable.
The penalty method:

xk+1 = arg min
{

θ(x) +
β

2
‖Ax − b‖2

∣

∣ x ∈ X
}

which solves an easier problem without linear constraints — with
much more implementability.
Of course, with much less accuracy —- indeed, not necessarily
convergent if β 9 +∞.

Xiaoming Yuan (HKBU) Accuracy v.s. Implementability in Optimization September 02, 2014 5 / 37



Backgrounds 2014 Workshop on Optimization for Modern Computation, Peking Univesity

A Canonical Convex Optimization Model

A canonical convex minimization model with linear constraints:

min{θ(x) | Ax = b, x ∈ X},

with A ∈ ℜm×n, b ∈ ℜm, X ⊆ ℜn a closed convex set, θ : ℜn → ℜ a
convex but not necessarily smooth function.
Solving the original model — thus with 100% accuracy. But how?
— in general, not possible. — not implementable.
The penalty method:

xk+1 = arg min
{

θ(x) +
β

2
‖Ax − b‖2

∣

∣ x ∈ X
}

which solves an easier problem without linear constraints — with
much more implementability.
Of course, with much less accuracy —- indeed, not necessarily
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where λ ∈ ℜm is the Lagrange multiplier and β > 0 is a penalty
parameter.

The subproblem is as difficult as that of the penalty method (the
same level of implementability)

It is convergent with any fixed β > 0 (higher accuracy)
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ALM has an augmented term and it updates the dual variable
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In 1976, T. Rockafellar showed that ALM is an application of the
proximal point algorithm (B. Martinet, 1970, or even earlier, J.
Moreau, 1965) to the dual problem of the model above.

It can be regarded as a dual ascent method over the dual variable
λ.

A significant difference from the penalty method — the penalty
parameter of ALM can theoretically be fixed as any positive scalar.
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A Separable Model

For many applications, the last model can be specified as a
separable form

min{θ1(x1) + θ2(x2) | A1x1 + A2x2 = b, x1 ∈ X1, x2 ∈ X2},

where A1 ∈ ℜm×n1 , A2 ∈ ℜm×n2 , b ∈ ℜm, Xi ⊆ ℜni (i = 1,2) and
θi : ℜ

ni → ℜ (i = 1,2).
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ni → ℜ (i = 1,2).
This model corresponds to the last model with
θ(x) = θ1(x1) + θ2(x2), x = (x1, x2), A = (A1,A2), X = X1 × X2

and n = n1 + n2.
A typical application of the widely-used l1-l2 model

min{µ‖x‖1 +
1
2
‖Ax − b‖2}

where the least-square term 1
2‖Ax − b‖2 represents a data-fidelity

term and the l1-norm term ‖x‖1 is a regularization term for
inducing spare solutions, and µ > 0 is a trade-off parameter.
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Using ALM Directly with 100% Accuracy

Applying ALM directly:
{

(xk+1
1 , xk+1

2 )=arg min
{

θ1(x1) + θ2(x2) − (λk )T (A1x1 + A2x2 − b) + β
2 ‖A1x1 + A2x2 − b‖2 ∣

∣ (x1, x2) ∈ X1 × X2
}

λk+1 = λk − β(A1xk+1 + A2xk+1
2 − b);
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∣ (x1, x2) ∈ X1 × X2
}

λk+1 = λk − β(A1xk+1 + A2xk+1
2 − b);

How about its implementability?

Is it easy to solve the ALM subproblem exactly?
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Parallel (Jacobian) Splitting:










xk+1
1 = arg min

{

θ1(x1) − (λk )T (A1x1) +
β
2 ‖A1x1 + A2xk

2 − b‖2 | x1 ∈ X1
}

,

xk+1
2 = arg min

{

θ2(x2) − (λk )T (A2x2) +
β
2 ‖A1xk

1 + A2x2 − b‖2 | x2 ∈ X2
}

,

λk+1 = λk − β(A1xk+1
1 + A2xk+1

2 − b).
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Both lose accuracy but gain implementability — less accurate but
more implementable cases compared to the original ALM.
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θ1(x1) − (λk )T (A1x1) +
β
2 ‖A1x1 + A2xk

2 − b‖2 | x1 ∈ X1
}

,

xk+1
2 = arg min

{

θ2(x2) − (λk )T (A2x2) +
β
2 ‖A1xk+1

1 + A2x2 − b‖2 | x2 ∈ X2
}

,

λk+1 = λk − β(A1xk+1
1 + A2xk+1

2 − b).

Both lose accuracy but gain implementability — less accurate but
more implementable cases compared to the original ALM.
They are equally implementable, and Sequential Splitting is more
accurate.
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Splitting the ALM with Less Accuracy?

Parallel (Jacobian) Splitting:










xk+1
1 = arg min

{

θ1(x1) − (λk )T (A1x1) +
β
2 ‖A1x1 + A2xk

2 − b‖2 | x1 ∈ X1
}
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{

θ2(x2) − (λk )T (A2x2) +
β
2 ‖A1xk

1 + A2x2 − b‖2 | x2 ∈ X2
}

,

λk+1 = λk − β(A1xk+1
1 + A2xk+1

2 − b).

Sequential (Gauss-Seidel) Splitting:










xk+1
1 = arg min

{

θ1(x1) − (λk )T (A1x1) +
β
2 ‖A1x1 + A2xk

2 − b‖2 | x1 ∈ X1
}

,

xk+1
2 = arg min

{

θ2(x2) − (λk )T (A2x2) +
β
2 ‖A1xk+1

1 + A2x2 − b‖2 | x2 ∈ X2
}

,

λk+1 = λk − β(A1xk+1
1 + A2xk+1

2 − b).

Both lose accuracy but gain implementability — less accurate but
more implementable cases compared to the original ALM.
They are equally implementable, and Sequential Splitting is more
accurate.
Parallel Splitting is not convergent (He/Hou/Y, 2013).
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2 ‖A1xk

1 + A2x2 − b‖2 | x2 ∈ X2
}

,

λk+1 = λk − β(A1xk+1
1 + A2xk+1

2 − b).

Sequential (Gauss-Seidel) Splitting:










xk+1
1 = arg min

{

θ1(x1) − (λk )T (A1x1) +
β
2 ‖A1x1 + A2xk

2 − b‖2 | x1 ∈ X1
}

,

xk+1
2 = arg min

{

θ2(x2) − (λk )T (A2x2) +
β
2 ‖A1xk+1

1 + A2x2 − b‖2 | x2 ∈ X2
}

,

λk+1 = λk − β(A1xk+1
1 + A2xk+1

2 − b).

Both lose accuracy but gain implementability — less accurate but
more implementable cases compared to the original ALM.
They are equally implementable, and Sequential Splitting is more
accurate.
Parallel Splitting is not convergent (He/Hou/Y, 2013).
Sequential Splitting is convergent — the Alternating Direction
Method of Multipliers (ADMM) originally proposed by R. Glowinski
and Marrocco in 1975.
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Comments on ADMM

The ADMM scheme:











xk+1
1 = arg min

{

θ1(x1) − (λk )T (A1x1) +
β
2 ‖A1x1 + A2xk

2 − b‖2 | x1 ∈ X1
}

,

xk+1
2 = arg min

{

θ2(x2) − (λk )T (A2x2) +
β
2 ‖A1xk+1

1 + A2x2 − b‖2 | x2 ∈ X2
}

,

λk+1 = λk − β(A1xk+1
1 + A2xk+1

2 − b).

ADMM represents an inexact version of ALM, because the
(x1, x2)-subproblem in ALM is decomposed into two smaller ones.
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1 + A2x2 − b‖2 | x2 ∈ X2
}

,

λk+1 = λk − β(A1xk+1
1 + A2xk+1

2 − b).

ADMM represents an inexact version of ALM, because the
(x1, x2)-subproblem in ALM is decomposed into two smaller ones.

It is possible to take advantage of the properties of θ1 and θ2

individually — the decomposed subproblems are potentially much
easier than the aggregated subproblem in (the original
subproblem of) ALM.
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Comments on ADMM

The ADMM scheme:











xk+1
1 = arg min

{

θ1(x1) − (λk )T (A1x1) +
β
2 ‖A1x1 + A2xk

2 − b‖2 | x1 ∈ X1
}

,

xk+1
2 = arg min

{

θ2(x2) − (λk )T (A2x2) +
β
2 ‖A1xk+1

1 + A2x2 − b‖2 | x2 ∈ X2
}

,

λk+1 = λk − β(A1xk+1
1 + A2xk+1

2 − b).

ADMM represents an inexact version of ALM, because the
(x1, x2)-subproblem in ALM is decomposed into two smaller ones.

It is possible to take advantage of the properties of θ1 and θ2

individually — the decomposed subproblems are potentially much
easier than the aggregated subproblem in (the original
subproblem of) ALM.

For the mentioned l1-l2 model, all subproblems are even easy
enough to have closed-form solutions (to be delineated).
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Cont’d

A “renaissance" of ADMM in many application domains such as
image processing, statistical learning, computer vision, and so on.
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Cont’d

A “renaissance" of ADMM in many application domains such as
image processing, statistical learning, computer vision, and so on.

In 2011, we proved ADMM’s convergence rate.
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Cont’d

A “renaissance" of ADMM in many application domains such as
image processing, statistical learning, computer vision, and so on.

In 2011, we proved ADMM’s convergence rate.

Review papers: Boyd et al. 2010, Glowinski 2012, Eckstein and
Yao 2012.
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Accuracy of ADMM

Certainly, acquiring implementability does not mean no care about the
accuracy.

1Ng/Wang/Y., Inexact alternating direction methods for image recovery, SIAM
Journal on Scientific Computing, 33(4), 1643-1668, 2011.
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Accuracy of ADMM

Certainly, acquiring implementability does not mean no care about the
accuracy.

The accuracy of ADMM’s subproblems should be considered
seriously.











xk+1
1 ≈arg min

{

θ1(x1) − (λk )T (A1x1) +
β
2 ‖A1x1 + A2xk

2 − b‖2 | x1 ∈ X1
}

,
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{

θ2(x2) − (λk )T (A2x2) +
β
2 ‖A1xk+1

1 + A2x2 − b‖2 | x2 ∈ X2
}

,

λk+1 = λk − β(A1xk+1
1 + A2xk+1

2 − b).

1Ng/Wang/Y., Inexact alternating direction methods for image recovery, SIAM
Journal on Scientific Computing, 33(4), 1643-1668, 2011.
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}

,

λk+1 = λk − β(A1xk+1
1 + A2xk+1

2 − b).

How to define “≈" rigorously above?

1Ng/Wang/Y., Inexact alternating direction methods for image recovery, SIAM
Journal on Scientific Computing, 33(4), 1643-1668, 2011.
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Accuracy of ADMM

Certainly, acquiring implementability does not mean no care about the
accuracy.

The accuracy of ADMM’s subproblems should be considered
seriously.










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θ1(x1) − (λk )T (A1x1) +
β
2 ‖A1x1 + A2xk
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}

,
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2 ≈arg min

{

θ2(x2) − (λk )T (A2x2) +
β
2 ‖A1xk+1

1 + A2x2 − b‖2 | x2 ∈ X2
}

,

λk+1 = λk − β(A1xk+1
1 + A2xk+1

2 − b).

How to define “≈" rigorously above?

For a general case, we need to analyze rigorously the inexactness
criterion for solving these subproblems 1.

1Ng/Wang/Y., Inexact alternating direction methods for image recovery, SIAM
Journal on Scientific Computing, 33(4), 1643-1668, 2011.

Xiaoming Yuan (HKBU) Accuracy v.s. Implementability in Optimization September 02, 2014 14 / 37



Accuracy v.s. Implementability – An Easier Case 2014 Workshop on Optimization for Modern Computation, Peking Univesity

Two ADMM Applications

(1) Compressive Sensing (Donoho, Candes, Tao,· · · )
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Two ADMM Applications

(1) Compressive Sensing (Donoho, Candes, Tao,· · · )

Allowing us to go beyond the Shannon limit to exploit the sparsity
of a signal.
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Two ADMM Applications

(1) Compressive Sensing (Donoho, Candes, Tao,· · · )

Allowing us to go beyond the Shannon limit to exploit the sparsity
of a signal.
Acquiring important information of a signal efficiently (e.g.,
storage-saving, speed-improving).

Xiaoming Yuan (HKBU) Accuracy v.s. Implementability in Optimization September 02, 2014 15 / 37



Accuracy v.s. Implementability – An Easier Case 2014 Workshop on Optimization for Modern Computation, Peking Univesity

Two ADMM Applications

(1) Compressive Sensing (Donoho, Candes, Tao,· · · )

Allowing us to go beyond the Shannon limit to exploit the sparsity
of a signal.
Acquiring important information of a signal efficiently (e.g.,
storage-saving, speed-improving).

compressive
equipment 

original signal observation
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Two ADMM Applications

(1) Compressive Sensing (Donoho, Candes, Tao,· · · )

Allowing us to go beyond the Shannon limit to exploit the sparsity
of a signal.
Acquiring important information of a signal efficiently (e.g.,
storage-saving, speed-improving).

compressive
equipment 

original signal observation

Ideal model: Ax = b

x — original signal, A — sensing matrix (a fat matrix), b — observation
(with noise)
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The Sparsity of a Signal

Some signals are large-scale but sparse (maybe under some
transform domain)
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Mathematical Model

Find a sparse solution of a system of linear equations

min
{

‖x‖0 | Ax = b, x ∈ Rn
}

,

where ‖x‖0 = number of nonzeros of x and A ∈ Rm×n with m ≪ n.

Xiaoming Yuan (HKBU) Accuracy v.s. Implementability in Optimization September 02, 2014 17 / 37



Accuracy v.s. Implementability – An Easier Case 2014 Workshop on Optimization for Modern Computation, Peking Univesity

Mathematical Model

Find a sparse solution of a system of linear equations

min
{

‖x‖0 | Ax = b, x ∈ Rn
}

,

where ‖x‖0 = number of nonzeros of x and A ∈ Rm×n with m ≪ n.

The solution is in general not unique.
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Mathematical Model

Find a sparse solution of a system of linear equations

min
{

‖x‖0 | Ax = b, x ∈ Rn
}

,

where ‖x‖0 = number of nonzeros of x and A ∈ Rm×n with m ≪ n.

The solution is in general not unique.

It is NP-hard!
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Basic Models for Compressive Sensing

Basis-pursuit (BP):

min {‖x‖1 | Ax = b}
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Basic Models for Compressive Sensing

Basis-pursuit (BP):

min {‖x‖1 | Ax = b}

l1-regularized least-squares model:

min τ‖x‖1 +
1
2
‖Ax − b‖2

2
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A Reformulation of the l1 − l2 Model

min
x

τ‖x‖1 +
1
2
‖Ax − b‖2

2
~

w

�
By introducing y

min τ‖x‖1 + 1
2‖Ay − b‖2

2
s.t. x = y .
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Solutions of ADMM’s Subproblems

min τ‖x‖1 + 1
2‖Ay − b‖2

2
s.t. x = y .
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Solutions of ADMM’s Subproblems

min τ‖x‖1 + 1
2‖Ay − b‖2

2
s.t. x = y .

1 xk+1 = arg min
x∈Rn

τ‖x‖1 + β
2

∥

∥

∥
x − yk − λk

β

∥

∥

∥

2

2
;

2 yk+1: (βI + AT A)y = AT b + βxk+1 − λk ;
3 λk+1 = λk − β

(

xk+1 − yk+1
)
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Solutions of ADMM’s Subproblems

min τ‖x‖1 + 1
2‖Ay − b‖2

2
s.t. x = y .

1 xk+1 = arg min
x∈Rn

τ‖x‖1 + β
2

∥

∥

∥
x − yk − λk

β

∥

∥

∥

2

2
;

2 yk+1: (βI + AT A)y = AT b + βxk+1 − λk ;
3 λk+1 = λk − β

(

xk+1 − yk+1
)

P1 is a soft-shrinkage operator
P2 is a system of linear equations, efficient solvers (e.g. PCG or BB)
are available
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Another ADMM Application

(2) Image deblurring
A clean image could be degraded by blur — defocus of the camera’s
lens, the moving object, turbulence in the air, · · ·
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Another ADMM Application

(2) Image deblurring
A clean image could be degraded by blur — defocus of the camera’s
lens, the moving object, turbulence in the air, · · ·

min ‖|∇x |‖1 +
µ

2
‖Kx − x0‖2,

where x is the clean image, x0 is the corrupted image by Gaussian
noise, K is the point spread function (blur), ∇ is a gradient operator (by
Rudin/Osher/Fatemi, 92’) to preserve sharp edges of an image, and µ

is a trade-off parameter.
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Another ADMM Application

(2) Image deblurring
A clean image could be degraded by blur — defocus of the camera’s
lens, the moving object, turbulence in the air, · · ·

min ‖|∇x |‖1 +
µ

2
‖Kx − x0‖2,

where x is the clean image, x0 is the corrupted image by Gaussian
noise, K is the point spread function (blur), ∇ is a gradient operator (by
Rudin/Osher/Fatemi, 92’) to preserve sharp edges of an image, and µ

is a trade-off parameter.

original image blurred image restored image
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Applying ADMM

Reformulate it as

min ‖|y |‖1 +
µ

2
‖Kx − x0‖2

s.t. ∇x = y ,

to which ADMM is applicable.
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Applying ADMM

Reformulate it as

min ‖|y |‖1 +
µ

2
‖Kx − x0‖2

s.t. ∇x = y ,

to which ADMM is applicable.
The resulting subproblems are easy.
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Applying ADMM

Reformulate it as

min ‖|y |‖1 +
µ

2
‖Kx − x0‖2

s.t. ∇x = y ,

to which ADMM is applicable.
The resulting subproblems are easy.

The x-subproblem (via a DFT):

x̃k = arg min
x

{

µ

2
‖Kx − x0‖2 − (λk )T (∇x − yk ) +

β

2
‖∇x − yk‖2

}

.
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Applying ADMM

Reformulate it as

min ‖|y |‖1 +
µ

2
‖Kx − x0‖2

s.t. ∇x = y ,

to which ADMM is applicable.
The resulting subproblems are easy.

The x-subproblem (via a DFT):

x̃k = arg min
x

{

µ

2
‖Kx − x0‖2 − (λk )T (∇x − yk ) +

β

2
‖∇x − yk‖2

}

.

The y-subproblem (via a shrinkage):

ỹk = arg min
y

{

‖|y |‖1 − (λk+1)T (∇xk+1 − y) +
β

2
‖∇xk+1 − y‖2

}

.
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Image Inpainting

Problem: Some pixels are missing in image. Partial information of
image is available

g = S f, S — mask

Model: min {‖∇f‖1 | S f = g}

original image missing pixel image restored image
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Image Decomposition

Problem: Separate the sketch (cartoon) and oscillating component
(texture) of image

f = u + v, u — cartoon part, v — texture part

Model: min
{

τ‖∇u‖1 + ‖v‖−1,∞ | u + v = f
}

original image cartoon part texture part
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Magnetic Resonance Imaging (MRI)

Problem: Reconstruct a medical image by sampling its Fourier
coefficients partially

Fg = PFf, P — sampling mask, F — Fourier transform

Model: min {‖∇f‖1 | Fg = PFf}

medical image sampling mask reconstruction
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A More Complicated Model with Higher Degree of
Separability

A more complicated multi-block separable convex optimization model:

min







m
∑

i=1

θi (xi )
∣

∣

∣

m
∑

i=1

Ai xi = b, xi ∈ Xi , i = 1, 2, · · · , m







,

with m ≥ 3.
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Separability

A more complicated multi-block separable convex optimization model:

min







m
∑

i=1

θi (xi )
∣

∣

∣

m
∑

i=1

Ai xi = b, xi ∈ Xi , i = 1, 2, · · · , m







,

with m ≥ 3.

Applications include

Image alignment problem

The robust principal component analysis model with noisy and
incomplete data

The latent variable Gaussian graphical model selection

The quadratic discriminant analysis model
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Splitting Versions with Less Accuracy while More
Implementability

Obviously, the parallel (Jacobian) splitting:



















































































xk+1
1 = argmin{θ1(x1) − (λk )T (A1x1) +

β
2 ‖A1x1 +

m
∑

j=2

Aj x
k
j − b‖2

| x1 ∈ X1},

· · · · · ·

xk+1
i = argmin{θi (xi ) − (λk )T (Ai xi ) +

β
2 ‖

i−1
∑

j=1

Aj x
k
j + Ai xi +

m
∑

j=i+1

Aj x
k
j − b‖2

| xi ∈ Xi},

· · · · · ·

xk+1
m = argmin{θm(xm) − (λk )T (Amxm) +

β
2 ‖

m−1
∑

j=1

Aj x
k
j + Amxm − b‖2

| xm ∈ Xm},

λk+1 = λk − β(
m
∑

i=1
Ai x

k+1
i − b).

does not work (more details are coming).
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Cont’d

Can we extend ADMM straightforwardly (by splitting ALM into m
subproblems sequentially)?



















































































xk+1
1 = argmin{θ1(x1) − (λk )T (A1x1) +

β
2 ‖A1x1 +

m
∑

j=2

Aj x
k
j − b‖2

| x1 ∈ X1},

· · · · · ·

xk+1
i = argmin{θi (xi ) − (λk )T (Ai xi ) +

β
2 ‖

i−1
∑

j=1

Aj x
k+1
j + Ai xi +

m
∑

j=i+1

Aj x
k
j − b‖2

| xi ∈ Xi},

· · · · · ·

xk+1
m = argmin{θm(xm) − (λk )T (Amxm) + β

2 ‖

m−1
∑

j=1

Aj x
k+1
j + Amxm − b‖2

| xm ∈ Xm},

λk+1 = λk − β(
m
∑

i=1
Ai x

k+1
i − b).
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∑
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j + Amxm − b‖2

| xm ∈ Xm},

λk+1 = λk − β(
m
∑

i=1
Ai x

k+1
i − b).

This direct extension of the ADMM has been widely used in the
literature; and it does work very well for many applications!
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j + Amxm − b‖2
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Ai x
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This direct extension of the ADMM has been widely used in the
literature; and it does work very well for many applications!

But for a very long time, neither affirmative convergence proof nor
counter example showing its divergence was available.
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Recently we 2 found some examples showing the divergence of
the direct extension of ADMM even when m = 3. So, the direct
extension of ADMM for multi-block separable convex optimization
model is not necessarily convergent!

2Chen/He/Ye/Y., The direct extension of ADMM for multi-block separable convex
minimization models is not necessarily convergent, September 2013.
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the direct extension of ADMM even when m = 3. So, the direct
extension of ADMM for multi-block separable convex optimization
model is not necessarily convergent!
That is, even to solve

min
{

θ1(x1) + θ2(x2) + θ3(x3)
∣

∣

∣ A1x1 + A2x2 + A3x3 = b, xi ∈ Xi , i = 1, 2, 3
}

,

2Chen/He/Ye/Y., The direct extension of ADMM for multi-block separable convex
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Recently we 2 found some examples showing the divergence of
the direct extension of ADMM even when m = 3. So, the direct
extension of ADMM for multi-block separable convex optimization
model is not necessarily convergent!
That is, even to solve

min
{

θ1(x1) + θ2(x2) + θ3(x3)
∣

∣

∣ A1x1 + A2x2 + A3x3 = b, xi ∈ Xi , i = 1, 2, 3
}

,

the following scheme is not necessarily convergent:























xk+1
1 = argmin{θ1(x1) − (λk )T (A1x1) +

β
2 ‖A1x1 + A2xk

2 + A3xk
3 − b‖2

| x1 ∈ X1},

xk+1
2 = argmin{θ2(x2) − (λk )T (A2x2) +

β
2 ‖A1xk+1

1 + A2x2 + A3xk
3 − b‖2

| x2 ∈ X2},

xk+1
3 = argmin{θ3(x3) − (λk )T (A3x3) +

β
2 ‖A1xk+1

1 + A2xk+1
2 + A3x3 − b‖2

| x3 ∈ X3},

λk+1 = λk − β(A‘x
k+1
‘

+ A2xk+1
2 + A3xk+1

3 − b).

2Chen/He/Ye/Y., The direct extension of ADMM for multi-block separable convex
minimization models is not necessarily convergent, September 2013.
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
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
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1 = argmin{θ1(x1) − (λk )T (A1x1) +
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2 ‖A1xk+1
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k+1
‘
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3 − b).

Both Jacobian and Gauss-Seidel decompositions fail — too much
loss of accuracy for m ≥ 3!

2Chen/He/Ye/Y., The direct extension of ADMM for multi-block separable convex
minimization models is not necessarily convergent, September 2013.
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One Way of Applying the ADMM

Conceptually, we can treat the multi-block model as a two-block
model

min
{

θ1(x1) + θ2(x2) + θ3(x3)
∣

∣

∣ A1x1 + A2x2 + A3x3 = b, xi ∈ Xi , i = 1, 2, 3
}

,

Xiaoming Yuan (HKBU) Accuracy v.s. Implementability in Optimization September 02, 2014 31 / 37



Accuracy v.s. Implementability – A More Complicated Case2014 Workshop on Optimization for Modern Computation, Peking Univesity

One Way of Applying the ADMM

Conceptually, we can treat the multi-block model as a two-block
model

min
{

θ1(x1) + θ2(x2) + θ3(x3)
∣

∣

∣ A1x1 + A2x2 + A3x3 = b, xi ∈ Xi , i = 1, 2, 3
}

,

Then, apply the original ADMM (for the two-block case)

{

xk+1
1 = arg min

{

θ1(x1) − (λk )T (A1x1) +
β
2 ‖A1x1 + A2xk

2 + A3xk
3 − b‖2 ∣

∣ x1 ∈ X1
}

,

(xk+1
2 , xk+1

3 )= arg min

{

θ2(x2) + θ3(x3) − (λk )T (A2x2 + A3x3 − b)
+

β
2 ‖A1xk+1

1 + A2x2 + A3x3 − b‖2 ∣

∣ x2 ∈ X2, x3 ∈ X3

}

,

λk+1 = λk − αβ(A1xk+1
1 + A2xk+1

2 + A3xk+1
3 − b).
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}

,
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{
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1 = arg min

{

θ1(x1) − (λk )T (A1x1) +
β
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2 + A3xk
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}

,

(xk+1
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3 )= arg min

{
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+

β
2 ‖A1xk+1

1 + A2x2 + A3x3 − b‖2 ∣

∣ x2 ∈ X2, x3 ∈ X3

}

,

λk+1 = λk − αβ(A1xk+1
1 + A2xk+1

2 + A3xk+1
3 − b).

It is accurate (recall ADMM’s convergence).
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θ1(x1) + θ2(x2) + θ3(x3)
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∣

∣ A1x1 + A2x2 + A3x3 = b, xi ∈ Xi , i = 1, 2, 3
}

,

Then, apply the original ADMM (for the two-block case)

{
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1 = arg min

{

θ1(x1) − (λk )T (A1x1) +
β
2 ‖A1x1 + A2xk

2 + A3xk
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}

,

(xk+1
2 , xk+1

3 )= arg min

{

θ2(x2) + θ3(x3) − (λk )T (A2x2 + A3x3 − b)
+

β
2 ‖A1xk+1

1 + A2x2 + A3x3 − b‖2 ∣

∣ x2 ∈ X2, x3 ∈ X3

}

,

λk+1 = λk − αβ(A1xk+1
1 + A2xk+1

2 + A3xk+1
3 − b).

It is accurate (recall ADMM’s convergence).

But it is not implementable (hard to solve the (x2, x3)-subproblem).
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ADMM with Further Splitting

Split the (x2, x3)-subproblem in parallel























xk+1
1 = arg min

{

θ1(x1) − (λk )T (A1x1) +
β
2 ‖A1x1 + A2xk

2 + A3xk
3 − b‖2 ∣

∣ x1 ∈ X1
}

,

xk+1
2 = arg min

{

θ2(x2) − (λk )T (A2x2 + A3xk
3 − b) + β

2 ‖A1xk+1
1 + A2x2 + A3xk

3 − b‖2 ∣

∣ x2 ∈ X2
}

,

xk+1
3 = arg min

{

θ3(x3) − (λk )T (A2xk
2 + A3x3 − b) + β

2 ‖A1xk+1
1 + A2xk

2 + A3x3 − b‖2 ∣

∣ x3 ∈ X3
}

,

λk+1 = λk − αβ(A1xk+1
1 + A2xk+1

2 + A3xk+1
3 − b).
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Both are implementable, but how about the accuracy?

Both are not necessarily convergent (Liu/Lu/Y., in pending)
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Both are not necessarily convergent (Liu/Lu/Y., in pending)

Implementable but not accurate!
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Convergence-guarantee

How to guarantee the convergence while remain the implementability?
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Convergence-guarantee

How to guarantee the convergence while remain the implementability?

Correct the output of the decomposed subproblems, see our work
in 2011-2013.
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Convergence-guarantee

How to guarantee the convergence while remain the implementability?

Correct the output of the decomposed subproblems, see our work
in 2011-2013.

Proximally regularized the decomposed subproblems (this works
even when the ALM subproblem is decomposed in parallel), see
He/Xu/Y., Deng/Lai/Pang/Yin, Wang/Hong/Ma/Luo, etc.
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Accuracy Improvement
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Accuracy Improvement

For the convergence-guaranteed and implementability-preserved
algorithms,
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Accuracy Improvement

For the convergence-guaranteed and implementability-preserved
algorithms,

How to design inexact criteria for the subproblems for the general
setting? (Y., ongoing)

Xiaoming Yuan (HKBU) Accuracy v.s. Implementability in Optimization September 02, 2014 34 / 37



Accuracy v.s. Implementability – A More Complicated Case2014 Workshop on Optimization for Modern Computation, Peking Univesity

Accuracy Improvement

For the convergence-guaranteed and implementability-preserved
algorithms,

How to design inexact criteria for the subproblems for the general
setting? (Y., ongoing)

Do we really need to decompose m times?
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Accuracy Improvement

For the convergence-guaranteed and implementability-preserved
algorithms,

How to design inexact criteria for the subproblems for the general
setting? (Y., ongoing)

Do we really need to decompose m times? — How about
decomposing less blocks thus preserve more accuracy of the
subproblems?
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Accuracy Improvement

For the convergence-guaranteed and implementability-preserved
algorithms,

How to design inexact criteria for the subproblems for the general
setting? (Y., ongoing)

Do we really need to decompose m times? — How about
decomposing less blocks thus preserve more accuracy of the
subproblems?

We can regroup m block as t blocks with t ≪ m, apply existing
methods for the t-block reformulated model to gain the accuracy
(i.e., the proved convergence) and further decompose each
subproblem to gain the implementability
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Accuracy Improvement

For the convergence-guaranteed and implementability-preserved
algorithms,

How to design inexact criteria for the subproblems for the general
setting? (Y., ongoing)

Do we really need to decompose m times? — How about
decomposing less blocks thus preserve more accuracy of the
subproblems?

We can regroup m block as t blocks with t ≪ m, apply existing
methods for the t-block reformulated model to gain the accuracy
(i.e., the proved convergence) and further decompose each
subproblem to gain the implementability —-(He/Y. and
Fu/He/Wang/Y.’s work in August 2014)
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Conclusions

Accuracy and implementability are two common yet usually
conflicted objectives in algorithmic design.
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Conclusions

Accuracy and implementability are two common yet usually
conflicted objectives in algorithmic design.

We show by some convex optimization models with strong
application backgrounds (imaging, learning, cloud computing, big
data, etc.) how to consider these two objectives.
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Conclusions

Accuracy and implementability are two common yet usually
conflicted objectives in algorithmic design.

We show by some convex optimization models with strong
application backgrounds (imaging, learning, cloud computing, big
data, etc.) how to consider these two objectives.

Interesting theoretical questions arise, such as the convergence
rate analysis (introducing some new analytic tools like variational
analysis).
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Conclusions

Accuracy and implementability are two common yet usually
conflicted objectives in algorithmic design.

We show by some convex optimization models with strong
application backgrounds (imaging, learning, cloud computing, big
data, etc.) how to consider these two objectives.

Interesting theoretical questions arise, such as the convergence
rate analysis (introducing some new analytic tools like variational
analysis).

Extendable to more areas (e.g., PDE or PDE-constrained
optimization (control) problems).
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Conclusions

Accuracy and implementability are two common yet usually
conflicted objectives in algorithmic design.

We show by some convex optimization models with strong
application backgrounds (imaging, learning, cloud computing, big
data, etc.) how to consider these two objectives.

Interesting theoretical questions arise, such as the convergence
rate analysis (introducing some new analytic tools like variational
analysis).

Extendable to more areas (e.g., PDE or PDE-constrained
optimization (control) problems).

Application-driven optimization makes sense!
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Thank you!

xmyuan@hkbu.edu.hk
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