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Data fitting

l2-norm: least-square data fitting

min ‖Ax − b‖2

s.t. x ∈ Rn.

When A is full rank in column, then x∗ = (AT A)−1AT b.

A 2nd-order conic programming formulation

min t

s.t. ‖Ax − b‖2 ≤ t

x ∈ Rn.

Experts in numerical analysis prefer the direct calculation
much more than the optimal solution method.
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l1- norm problem

l1-norm.

min ‖x‖1

s.t. Ax = b

x ∈ Rn.

A linear programming formulation

min
∑n

i=1 ti

s.t. −ti ≤ xi ≤ ti, i = 1, 2, . . . ,n

Ax = b

t , x ∈ Rn.
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Heuristic method for finding a sparse solution

Regressor selection problem: A potential regressors, b to be fit
by a linear combination of A

min ‖Ax − b‖2

s.t. card(x) ≤ k

x ∈ Zn
+.

It is NP-hard. Let m = 1, A = (a1,a2, . . . ,an), b = 1
2

∑n
i=1 ai ,

k ≤ n
2 . It is a partition problem.

Heuristic method.

min ‖Ax − b‖2 + γ‖x‖1

s.t. x ∈ Rn.

Ref. S. Boyd and L. Vandenberghe, Convex Optimization,
Cambridge University Press, 2004.
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Regularized approximation

min ‖Ax − b‖2 + γ‖x‖1

s.t. x ∈ Rn.

l1-norm and l2-norm constrained programming

min t1 + γt2

s.t. ‖Ax − b‖2 ≤ t1

‖x‖1 ≤ t2

x ∈ Rn, t1, t2 ∈ R.

The objective function is linear, the first constraint is a
2nd-order cone and the 2nd is a 1st-order cone.
It is a convex optimization problem of polynomially solvable.
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p-norm domain

Black: 1-norm. Red: 2-norm. Green: 3-norm. Yellow: 8-norm.
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Convex lp-norm problems

p-norm domain is convex (p ≥ 1).

For set {x | ‖x‖p ≤ 1}, the smallest one is the domain with
p = 1, which is the smallest convex set containing integer
points {−1, 1}n.

For p ≥ 1, the lp-norm problems with linear objective or linear
constraints are polynomially solvable.

Variants of lp-norm problems should be considered.
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Variants of lp-norm problems

l2-norm constrained quadratic problem

min xT Qx + qT x

s.t. ‖Ax − b‖2 ≤ cT x

cT x = d ≥ 0

x ∈ Rn.

l1-norm constrained quadratic problem

min xT Qx + qT x

s.t. ‖x‖1 ≤ k

x ∈ Rn,

where Q is a general symmetric matrix.
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lp-Norm Constrained Quadratic Programming

min 1
2 xT Qx + qT x

s.t. 1
2 xT Qix + qT

i x + ci ≤ 0, i = 1, 2, . . . ,m

‖Ax − b‖p ≤ cT x

x ∈ Rn,

where p ≥ 1.
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QCQP reformulation

min 1
2 xT Q0x + qT

0 x + c0

s.t. 1
2 xT Qix + qT

i x + ci ≤ 0, i = 1, 2, . . . ,m

x ∈ D,

whereD ⊆ Rn.
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p-norm form

l1-norm problem

min xT Qx + qT x

s.t. ‖x‖1 ≤ k

x ∈ Rn.

DenoteD = {x ∈ Rn | ‖x‖1 ≤ k}.
QCQP form

min xT Qx + qT x

s.t. x ∈ D.
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2-norm form

2-norm problem

min xT Qx + qT x

s.t. ‖Ax − b‖2 ≤ cT x

cT x = d ≥ 0

x ∈ Rn.

DenoteD =
{

x ∈ Rn | ‖Ax − b‖2 ≤ cT x
}

QCQP form

min xT Qx + qT x

s.t. cT x = d

x ∈ D.
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Lifting reformulation

min f (x) = 1
2 xT Q0x + qT

0 x + c0

s.t. gi(x) = 1
2 xT Qix + qT

i x + ci ≤ 0, i = 1, 2, . . . ,m (QCQP)

x ∈ D.

Denote: F = {x ∈ D | gi(x) ≤ 0, i = 1, 2, . . . ,m} .
Lifting

min 1
2

(
2c0 qT

0

q0 Q0

)
• X

s.t. 1
2

(
2ci qT

i

qi Qi

)
• X ≤ 0, i = 1, 2, . . . ,m

X =

(
1

x

)(
1

x

)T

, x ∈ F .
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Convex reformulation

min 1
2

(
2c0 qT

0

q0 Q0

)
• X

s.t. 1
2

(
2ci qT

i

qi Qi

)
• X ≤ 0, i = 1, 2, . . . ,m(

1 0

0 0

)
• X = 1

X ∈ cl(conv(


(

1

x

)(
1

x

)T

|x ∈ F

)).
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Linear conic programming reformulation

min 1
2

(
2c0 qT

0

q0 Q0

)
• X

s.t. 1
2

(
2ci qT

i

qi Qi

)
• X ≤ 0, i = 1, 2, . . . ,m(

1 0

0 0

)
• X = 1

X ∈ cl(cone(


(

1

x

)(
1

x

)T

|x ∈ F

)).

It is a linear conic programming and has the same optimal
value with QCQP.
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Quadratic-Function Conic Programming

PRIMAL

min 1
2

(
2c0 qT

0

q0 Q0

)
• V

s.t. 1
2

(
2ci qT

i

qi Qi

)
• V ≤ 0, i = 1, 2, . . . ,m (QFCP)(

1 0

0 0

)
• V = 1

V ∈ D∗F = cl

cone


(

1

x

)(
1

x

)T

, x ∈ F


 .

F ⊆ Rn, A • B = trace(ABT ),
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Quadratic-Function Conic Programming

DUAL

max σ

s.t.

(
−2σ + 2c0 + 2

∑m
i=1 λici (q0 +

∑m
i=1 λiqi)

T

q0 +
∑m

i=1 λiqi Q0 +
∑m

i=1 λiQi

)
∈ DF

σ ∈ R, λ ∈ Rm
+ ,

F ⊆ Rn,

DF =

U ∈ Sn+1|

(
1

x

)T

U

(
1

x

)
≥ 0,∀ x ∈ F

 .
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Properties of the Quadratic-Function Cone

Cone of nonnegative quadratic functions (Sturm and Zhang,
MOR 28, 2003).

DF =

U ∈ Sn+1|

(
1

x

)T

U

(
1

x

)
≥ 0,∀ x ∈ F

 .

If F 6= ∅, thenD∗F is the dual cone ofDF and vice versa.

If F is a bounded nonempty set, then

D∗F = cone


(

1

x

)(
1

x

)T

, x ∈ F

 .

If int(F) 6= ∅, thenD∗F andDF are proper.
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Properties

The complexity of checking whether V ∈ D∗F or U ∈ DF
depends on F .

When F = Rn,D∗F = Sn+1
+ .

When F = Rn
+,D∗F is the copositive cone!

Ref: recent survey papers (I. M. Bomze, EJOR, 2012 216(3);
Mirjam Dür, Recent Advances in Optimization and its
Applications in Engineering, 2010; J.-B. Hiriart-Urruty and A.
Seeger, SIAM Review 52(4), 2010.)

Relaxation or restriction

D∗F ⊆ Sn
+ ⊆ DF .

Approximation: Computable cover of F .
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Checking U ∈ DF is an optimization problem!

DF =

U ∈ Sn+1|

(
1

x

)T

U

(
1

x

)
≥ 0,∀ x ∈ F

 .

Theorem

U ∈ DF if and only if the optimal value of the following problem is
not negative

min

(
1

x

)T

U

(
1

x

)
s.t. x ∈ F .

If F is a p-norm constraint, then it is a p-norm constrained
quadratic programming.
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Easy cases

min

(
1

x

)T

U

(
1

x

)
s.t. x ∈ F .

If F is a p-norm constraint, then it is a p-norm constrained
quadratic programming.

When F = {x ∈ Rn | 1
2 xT Px + pT x + d ≤ 0}, P � 0, int(F) 6= ∅,

it is computable.

When F = Soc(n) =
{

x ∈ Rn|
√

xT Px ≤ cT x
}

, P � 0, int(F) 6= ∅,
it is computable.
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A special case of p-norm constrained quadratic
programming

min 1
2 xT Qx + qT x

s.t. ‖x‖p ≤ k

x ∈ Rn,

where p ≥ 1.
Equivalent formulation

min 1
2 xT Qx + 1

k tqT x

s.t. ‖x‖p ≤ t

t = k

x ∈ Rn.
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Homogenous quadratic constrained model

min 1
2 xT Qx + 1

k tqT x

s.t. ‖x‖p ≤ t

t = k

x ∈ Rn.

Homogenous quadratic form

min 1
2

(
t

x

)T (
0 1

k qT

1
k q Q

)(
t

x

)
s.t. t = k(

t

x

)
∈
{
(t , x) ∈ R× Rn | ‖x‖p ≤ t

}
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Complexity of the problem

Homogenous: It is polynomially computable when p = 2.

min xT Qx

s.t. x ∈ Soc(n) =
{

x ∈ Rn|
√

xT Px ≤ cT x
}
,

where Q is a general symmetric matrix, P is positive definite and
Soc(n + 1) has an interior ( Ref: Ye Tian et. al., JIMO 9(3), 2013).
Variant

min xT Qx + qT x

s.t. ‖Ax − b‖2 ≤ cT x

cT x = d ≥ 0

x ∈ Rn.

Complexity?
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Complexity of the problem

Homogeneous QP over the 1st-order cone is NP-hard

min

(
x0

x

)T

Q

(
x0

x

)

s.t.

(
x0

x

)
∈ Foc(n + 1),

where Foc(n + 1) = {(x0, x) ∈ R× Rn | ‖x‖1 ≤ x0} , and Q is a
general symmetric matrix.

It is NP-hard.
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Complexity of the problem

A cross section problem

min

(
1

x

)T

Q

(
1

x

)
s.t. ‖x‖1 ≤ 1

x ∈ Rn

Guo et. al. conjectured NP-hard (Ref: Xiaoling Guo et. al., JIMO
10(3), 2014.

It is NP-hard (Ref: Yong Hsia, Optimization Letters 8, 2014).
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Complexity of the problem

A general case p ≥ 1.

min

(
t

x

)T

Q

(
t

x

)

s.t.

(
t

x

)
∈
{
(t , x) ∈ R× Rn | ‖x‖p ≤ t

}
.

Zhou et. al. conjectured NP-hard (Ref: Jing Zhou et. al., PJO to
appear, 2014.

Provided with many solvable subcases.
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Quadratic-Function Conic Programming

PRIMAL

min 1
2

(
2c0 qT

0

q0 Q0

)
• V

s.t. 1
2

(
2ci qT

i

qi Qi

)
• V ≤ 0, i = 1, 2, . . . ,m (QFCP)(

1 0

0 0

)
• V = 1

V ∈ D∗F .

F ⊆ Rn, A • B = trace(ABT ),

D∗F = cl

cone


(

1

x

)(
1

x

)T

, x ∈ F


 .
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Quadratically Constrained Quadratic Programming
(QCQP)

Theorem

If F 6= ∅, then the QFCP primal, its dual and the QCQP have the same
optimal objective value.

Theorem

Suppose F , G1 and G2 be nonempty sets. Denote v(F), v(G1) and v(G2)
be the optimal objective value of the QFCP with F selecting different
sets respectively.
(i) If G1 ⊆ G2, thenDG1 ⊇ DG2 andD∗G1

⊆ D∗G2
.

(ii) If F ⊆ G1 ⊆ G2, then v(F) ≥ v(G1) ≥ v(G2).
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Relaxation

Relaxation
C∗ ⊇ D∗F and computable.

min 1
2

(
2c0 qT

0

q0 Q0

)
• V

s.t. v11 = 1
1
2 Hi • V ≤ 0, i = 1, 2, . . . , s

V = (vij) ∈ C∗,

The worst one: C∗ = Sn+1
+ .
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Ellipsoid Cover of Bounded Feasible Set

Easy case: Quadratic-function cone over one ellipsoid
constraint.

Theorem

Let F = {x ∈ Rn | g(x) 6 0}, where g(x) = 1
2 xT Qx + qT x + c,

int(F) 6= ∅ and Q ∈ Sn
++. For an (n + 1)× (n + 1) real symmetric

matrix V , V ∈ D∗F if and only if
1
2

(
2c qT

q Q

)
• V 6 0

V ∈ Sn+1
+ .
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Ellipsoid Cover of Bounded Feasible Set

Ellipsoid cover (Lu et al, 2011)

Theorem

Let G = G1 ∪ G2 ∪ · · · ∪ Gs , where
Gi = {x ∈ Rn | 1

2 xT Bix + bT
i x + di ≤ 0}, 1 ≤ i ≤ s, are ellipsoids with

an interior, then

D∗G = D∗G1
+D∗G2

+ · · ·+D∗Gs
.

And V ∈ D∗G if and only if the following system is feasible
V = V1 + V2 + · · ·+ Vs

1
2

(
2di bT

i

bi Bi

)
• Vi 6 0, i = 1, 2, . . . , s

Vi ∈ Sn+1
+ , i = 1, 2, . . . , s.

W. Xing Sept. 2-4, 2014, Peking University
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Ellipsoid Cover of Bounded Feasible Set

min H0 • V

s.t . V11 = 1

Hi • V 6 0, i = 1, 2 . . . ,m

V = V1 + · · ·+ Vs[
di bT

i

bi Bi

]
• Vi 6 0,Vi � 0, i = 1, 2, ..., s. (EC)

It is a SDP, computable!
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Ellipsoid Cover: Decomposition

Theorem

Under some assumptions, if V ∗ = V ∗1 + ...+V ∗s is an optimal solution
of (EC), then for each j, j = 1, .., s, there exists a decomposition of

V ∗j =

nj∑
i=1

µji

[
1

xji

][
1

xji

]T

for some nj > 0, xji ∈ Gj , µji > 0 and
∑nj

i=1 µji = [Y ∗j ]11. Moreover, V ∗

can be decomposed in the form of

V ∗ =
s∑

j=1

nj∑
i=1

µji

[
1

xji

][
1

xji

]T

with xji ∈ Gj , µji > 0 and
∑s

j=1

∑nj

i=1 µji = V ∗11 = 1.
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Ellipsoid Cover: Approximation Scheme

Step 1 Cover the feasible set F with some ellipsoid(s).

Step 2 Solve (EC).

Step 3 Decompose the optimal solution of (EC) and find a xji with the
smallest objective value (sensitive point).

Step 4 Check if the sensitive point xji ∈ F . If it is, then it is a global
optimum of QCQP. Otherwise, cover Gj with two smaller
ellipsoids. Repeat above procedure.

Step 5 The approximation objective values converge to the optimal
value of QCQP.

Applications: QP (Lu et al, to appear in OPT, 2014), 0-1
knapsack (Zhou et al, JIMO 9(3), 2013), to detect copositve cone
(Deng et al, EJOR 229, 2013) etc.
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Adaptive ellipsoid covering
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Applications to p-norm problems: bounded feasible
sets

p-norm problem

min xT Qx + qT x

s.t. ‖x‖p ≤ k

x ∈ Rn.

F = D =
{

x ∈ Rn | ‖x‖p ≤ k
}
.

2-norm problem

min xT Qx + qT x

s.t. ‖Ax − b‖2 ≤ cT x

cT x = d, x ∈ Rn.

D =
{

x ∈ Rn | ‖Ax − b‖2 ≤ cT x
}
,F =

{
x ∈ D | cT x = d

}
.
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Second-order Cone Cover
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Questions

For the least square problem, why the 2nd-order conic model is
not used generally?

Can we have more efficient algorithms than the interior point
method for SDP?
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Thank You!
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