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Motivation

Why study old, slow, simple algorithms?

Often suitable for machine learning and big-data applications.

Low accuracy required;
Favorable data access patterns.

Parallel asynchronous versions are a good fit for modern computers
(multicore, NUMA, clusters).

(Fairly) easy to implement.

Interesting new analysis, tied to plausible models of parallel
computation and data access.
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Asynchronous Parallel Optimization

Figure: Asynchronous parallel setup used in Hogwild! [Niu, Recht, Ré, and
Wright, 2011]
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Compute gradient at “X”
Update “X” in RAM

All cores share the same memory, containing the variable x ;

All cores run the same optimization algorithm independently;

All cores update the coordinates of x concurrently without any
software locking.

We use the same model of computation in this talk.
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1. Kaczmarz for Ax = b.

Consider linear equations Ax = b, where the equations are consistent and
matrix A is m × n, not necessarily square or full rank. Write

A =


aTi
aT2
...

aTm

 , where ‖ai‖2 = 1, ∀i (normalized rows).

Iteration j of Randomized Kaczmarz:

Select row index i(j) ∈ {1, 2, . . . ,m} randomly with equal probability.

Set
xj+1 ← xj − (aTi(j)xj − bi(j))ai(j).

Project x onto the plane of equation i(j).
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Relationship to Stochastic Gradient

Randomized Kaczmarz ≡ Stochastic Gradient applied to

f (x) :=
1

2m

m∑
i=1

(aTi x − bi )
2 =

1

2m
‖Ax − b‖22 =

1

m

m∑
i=1

fi (x)

with steplength αk ≡ 1.

However, it is a special case of SG, since the individual gradient estimates

∇fi (x) = ai (aTi x − bi )

approach zero as x → x∗. (The “variance” in the gradient estimate
shrinks to zero.)
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Randomized Kaczmarz Convergence: Linear Rate

Recall that A is scaled: ‖ai‖ = 1 for all i . λmin,nz denotes minimum
nonzero eigenvalue of ATA. P(·) is projection onto solution set.

1

2
‖xj+1 − P(xj+1)‖2 ≤ 1

2
‖xj − ai(j)(aTi(j)xj − bi(j))− P(xj)‖2

=
1

2
‖xj − P(xj)‖2 −

1

2
(aTi(j)xj − bi(j))

2.

Taking expectations:

E

[
1

2
‖xj+1 − P(xj+1)‖2 | xj

]
≤ 1

2
‖xj − P(xj)‖2 −

1

2
E
[
(aTi(j)xj − bi(j))

2
]

=
1

2
‖xj − P(xj)‖2 −

1

2m
‖Axj − b‖2

≤
(

1− λmin,nz

m

)
1

2
‖xj − P(xj)‖2.

Strohmer and Vershynin (2009)
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Asynchronous Random Kaczmarz (Liu, Wright, 2014)

Assumes that x is stored in shared memory, accessible to all cores.

Each core runs a simple process, repeating indefinitely:

Choose index i ∈ {1, 2, . . . ,m} uniformly at random;

Choose component t ∈ supp(ai ) uniformly at random;

Read the supp(ai )-components of x (from shared memory), needed to
evaluate aTi x ;

Update the t component of x :

(x)t ← (x)t − γ‖ai‖0(ai )t(aTi x − bi )

for some step size γ (a unitary operation);

Note that x can be updated by other cores between the time it is read and
the time that the update is performed.

Differs from Randomized Kaczmarz in that each update is using outdated
information and we update just a single component of x (in theory).
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AsyRK: Global View

From a “central” viewpoint, aggregating the actions of the individual
cores, we have the following: At each iteration j :

Select i(j) from {1, 2, . . . ,m} with equal probability;

Select t(j) from the support of ai(j) with equal probability;

Update component t(j):

xj+1 = xj − γ‖ai(j)‖0(aTi(j)xk(j) − bi(j))Et(j)ai(j),

where

k(j) is some iterate prior to j but no more than τ cycles old:

j − k(j) ≤ τ ;

Et is the n × n matrix of all zeros, except for 1 in the (t, t) location.

If all computational cores are roughly the same speed, we can think of the
delay τ as being similar to the number of cores.
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Consistent Reading

Assumes consistent reading, that is, the xk(j) used to evaluate the residual
is an x that actually existed at some point in the shared memory.

(This condition may be violated if two or more updates happen to the
supp(ai(j))-components of x while they are being read.)

When the vectors ai are sparse, inconsistency is not too frequent.

More on this later!
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AsyRK Analysis: A Key Element

Key parameters:

µ := maxi=1,2,...,m ‖ai‖0 (maximum nonzero row count);

α := maxi ,t ‖ai‖0‖AEtai‖ ≤ µ‖A‖;
λmax = max eigenvalue of ATA.

Idea of analysis: Choose some ρ > 1 and choose steplength γ small
enough that

ρ−1E(‖Axj − b‖2) ≤ E(‖Axj+1 − b‖2) ≤ ρE(‖Axj − b‖2).

Not too much change to the residual at each iteration. Hence, don’t pay
too much of a price for using outdated information.

But don’t want γ to be too tiny, otherwise overall progress is too slow.

Strike a balance!
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Main Theorem

Theorem

Choose any ρ > 1 and define γ via the following:

ψ = µ+
2λmaxτρ

τ

m

γ ≤ min

{
1

ψ
,

m(ρ− 1)

2λmaxρτ+1
, m

√
ρ− 1

ρτ (mα2 + λ2maxτρ
τ )

}

Then have

ρ−1E(‖Axj − b‖2) ≤ E(‖Axj+1 − b‖2) ≤ ρE(‖Axj − b‖2)

E(‖xj+1 − P(xj+1)‖2) ≤
(

1− λmin,nzγ

mµ
(2− γψ)

)
E(‖xj − P(xj)‖2),

A particular choice of ρ leads to simplified results, in a reasonable regime.
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A Particular Choice

Corollary

Assume
2eλmax(τ + 1) ≤ m

and set ρ = 1 + 2eλmax/m. Can show that γ = 1/ψ for this case, so
expected convergence is

E(‖xj+1 − P(xj+1)‖2) ≤
(

1− λmin,nz

m(µ+ 1)

)
E(‖xj − P(xj)‖2).

In the regime 2eλmax(τ + 1) ≤ m considered here the delay τ doesn’t
really interfere with convergence rate. In this regime, speedup is linear in
the number of cores!
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Discussion

Rate is consistent with serial randomized Kaczmarz: extra factor of
1/(µ+ 1) arises because we update just one component in x , not all
the components in ai(j).

For random matrices A with unit rows, we have
λmax ≈ (1 + O(m/n)), with high probability, so that τ can be O(m)
without compromising linear speedup.

Conditions on τ are less strict than for asynchronous random
algorithms for optimization problems. (Typically τ = O(n1/4) or
τ = O(n1/2) for coordinate descent methods.) See below....
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AsyRK: Near-Linear Speedup

Run on an Intel Xeon 40-core machine. Used one socket — 10 cores).

Diverges a bit from the analysis:

We update all components of x for ai(j) (not just one);
We use sampling without replacement to work through the rows of A,
reordering after each “epoch”

Sparse Gaussian random matrix A ∈ Rm×n with m = 100000 and
n = 80000, sparsity δ = .001. See linear speedup.
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AsyRK: Near-Linear Speedup

Sparse Gaussian random matrix A ∈ Rm×n with m = 100000 and
n = 80000, sparsity δ = .003.

See slight dropoff from linear speedup for this slightly less-sparse problem.
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(Runtime: 18.4 seconds on 10 cores.)
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RK vs Conjugate Gradient

We compare serial implementations of RK and CG. (The benefits of
multicore implementation are similar for both.) Random A, δ = .1.
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CG does better in the more ill-conditioned case, probably due to nice
distribution of dominant eigenvalues of ATA. (Note slower convergence in
later stages.) RK is competitive in the well-conditioned case.
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2. Asynchronous Parallel Stochastic Proximal Coordinate
Descent Algorithm (AsySPCD)

min
x

: F (x) := f (x) + g(x) (1)

f (·) : Rn 7→ R is convex and differentiable;

g(·) : Rn 7→ R ∪ {+∞} is a proper closed convex real value extended
function;

g(x) is separable: g(x) =
∑n

i=1 gi ((x)i ), gi (·) : R 7→ R ∪ {+∞}.

Instances of g(x):

Unconstrained: g(x) = constant.

Box constrained: g(x) =
∑n

i=1 1[ai ,bi ]((x)i ) where 1[ai ,bi ] is an
indicator function for [ai , bi ];

`p norm regularization: g(x) = ‖x‖pp where p ≥ 1.
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Instances

Problems that fit this framework include the following:

least squares: minx
1
2‖Ax − b‖2;

LASSO: minx
1
2‖Ax − b‖2 + λ‖x‖1;

support vector machine (SVM) with squared hinge loss:

min
w

C
∑
i

max{yi (xT
i w − b), 0}2 +

1

2
‖w‖2

support vector machine: dual form with bias term:

min
0≤α≤C1

1

2

∑
i ,j

αiαjyiyjK (xi , xj)−
∑
i

αi .
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Instances (continued)

logistic regression with `p norm regularization (p = 1, 2):

min
x

1

n

∑
i

log(1 + exp(−yix
T
i w)) + λ‖w‖pp

semi-supervised learning (Tikhonov Regularization)

min
f

∑
i∈{labeled data}

(fi − yi )
2 + λf TLf

where L is the Laplacian matrix.

relaxed linear program:

min
x≥0

cT x s.t. Ax = b ⇒ min
x≥0

cT x + λ‖Ax − b‖2
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Classical Coordinate Descent

Figure: Coordinate Descent
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Stochastic Coordinate Descent

Take a step of fixed length along partial derivative (not exact)

Choose components randomly (don’t have control over the sequence).
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Stochastic Proximal Coordinate Descent SPCD

Define prox-operator Ph for a convex function h:

Ph(y) = arg min
x

1

2
‖x − y‖2 + h(x).

(It’s nonexpansive: ‖Ph(y)− Ph(z)‖ ≤ ‖y − z‖.)
Basic Step: Select a coordinate i and compute the coordinate gradient
∇i f (x); take a step along this direction and “shrink” to account for gi .

(x)i ← Pαgi ((x)i − α∇i f (x)︸ ︷︷ ︸
coordinate gradient

),

for some step length α.

This is equivalent to solving an approximate version of the coordinate-i
problem in which f is replaced by a simple quadratic:

min
(z)i
∇i f (x)T [(z)i − (x)i ] +

1

2α
[(z)i − (x)i ]

2 + gi ((z)i ).
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Prox-Operator Examples

Prox-operators can be executed efficiently in many cases.

gi (t) = |t|: soft thresholding operation

Pλgi (t) = sgn(t) max{|t| − λ, 0}.

gi (t) = 1[a,b]: projection operation

Pλgi (t) = arg min
s∈[a,b]

1

2
‖s − t‖2 = mid(a, b, t).
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Local View of AsySPCD

Steplength depends on Lmax: component Lipschitz constant (“max
diagonal of Hessian”)

‖∇f (x + tej)−∇f (x)‖∞ ≤ Lmax|t| ∀x ∈ Rn, t ∈ R, j = 1, 2, . . . , n.

All processors run a stochastic coordinate descent process concurrently
and without synchronization:

Select a coordinate i ∈ {1, 2, . . . , n} uniformly at random;

Read “x” from the shared memory and compute the i gradient
component using “x”:

di ← ∇i f (x);

Update “x” in the shared memory by the proximal operation,
performed atomically:

(x)i ← P(γ/Lmax)gi

(
(x)i −

γ

Lmax
di

)
,

for some steplength γ > 0.
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Global View of AsySPCD

Global counter j incremented when one of the cores makes an update:

Choose i(j) ∈ {1, 2, · · · , n} uniformly at random;

Read components of x from shared memory needed to compute
∇i(j)f , denoting the local version of x by x̂j ;

Update compoment i(j) of x (atomically):

(xj+1)i(j) ← P(γ/Lmax)gi(j)

(
(xj)i(j) −

γ

Lmax
∇i(j)f (x̂j)

)
.

Note that x̂j may not never appear in shared memory at any point in time.
The elements of x may have been updated repeatedly during reading of x̂j ,
which means that the components of x̂j may have different “ages.”

We call this phenomenon inconsistent read.
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Consistent Read vs. Inconsistent Read
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Expressing Read-Inconsistency

Difference between x̂j and xj is expressed in terms of “missed updates:”

xj = x̂j +
∑

t∈K(j)

(xt+1 − xt)

where K (j) defines the iterate set of updates missed in reading x̂j .

We assume τ to be the upper bound of ages of all elements in K (j):

τ ≥ j −min{t | t ∈ K (j)}.

Example: our assumptions would be satisfied with τ = 10 when

x100 = x̂100 +
∑

t∈{91,95,98,99}

(xt+1 − xt)

τ is related strongly to the number of cores / processors that can be used
in the computation. The number of updates we would expect to miss
between reading and updating x is about equal to the number of cores.
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Notation

Lmax: component Lipschitz constant (“max diagonal of Hessian”)

‖∇f (x + tej)−∇f (x)‖∞ ≤ Lmax|t| ∀x ∈ Rn, t ∈ R, i ;

Lres: restricted Lipschitz constant (“max row-norm of Hessian”)

‖∇f (x + tei )−∇f (x)‖2 ≤ Lres|t| ∀x ∈ Rn, t ∈ R, i ;

Λ := Lres/Lmax measures the degree of diagonal dominance.

1 for separable f ,
2 for convex quadratic f with diagonally dominant Hessian,√

n for general quadratic.

S : the solution set of (1);
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Key to Analysis

Recall iteration:

(xj+1)i(j) = P(γ/Lmax)gi(j)

(
(xj)i(j) −

γ

Lmax
∇i(j)f (x̂j)

)
.

Choose some ρ > 1 and choose γ so that

E(‖xj − xj−1‖2) ≤ ρE(‖xj+1 − xj‖2) “ρ-condition”.

Not too much change in the step at each iteration
⇒ not too much change in the gradient
⇒ not too much price to pay for using outdated information.

Want to choose γ small enough to satisfy this property but large enough
to get a better convergence rate.

Strike a balance, as in asynchronous randomized Kaczmarz.
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Main Assumption: Optimal Strong Convexity (OSC)

Optimal strong convexity parameter µ > 0

F (x)− F (PS(x)) ≥ µ

2
‖x − PS(x)‖2

for all x ∈ domF .

Weaker than usual strong convexity — allows nonunique solutions, for a
start. Examples:

F (x) = f (Ax) with strongly convex f .

Squared hinge loss: F (x) =
∑

k max(aTk x − bk , 0)2;
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An OSC (but not strongly convex) function:
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Main Theorem: OSC yields a Linear Rate

Theorem

For any ρ > 1 + 4/
√

n, define

θ :=
ρ(τ+1)/2 − ρ1/2

ρ1/2 − 1
θ′ :=

ρ(τ+1) − ρ
ρ− 1

ψ := 1 +
τθ′

n
+

Λθ√
n
.

and choose

γ ≤ min

{
1

ψ
,

√
n(1− ρ−1)− 4

4(1 + θ)Λ

}
.

Then the “ρ-condition” is satisfied at all j , and we have

E‖xj − PS(xj)‖2 + 2γ(EF (xj)− F ∗)

≤
(

1− µ

n(l + γ−1)

)j (
‖x0 − PS(x0)‖2 + 2γ(F (x0)− F ∗)

)
.
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Notes on the Result

Rate depends intuitively on the various quantities involved:

Smaller γ ⇒ slower rate;

Smaller µ⇒ slower rate;

Larger Λ = Lres/Lmax implies smaller γ and thus slower rate.

Larger delay τ ⇒ slower rate.

Dependence on ρ is a bit more complicated, but best to choose ρ near its
lower bound.
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Special Case

Corollary

Consider the regime in which τ satisfies

4eΛ(τ + 1)2 ≤
√

n,

and define

ρ =

(
1 +

4eΛ(τ + 1)√
n

)2

.

Thus we can choose γ = 1
2 , and the rate simplifies to:

E(F (xj)−F ∗) ≤
(

1− µ

n(l + 2Lmax)

)j

(Lmax‖x0−PS(x0)‖2 + F (x0)−F ∗).

If the diagonal dominance properties are good (Λ ∼ 1) we have τ ∼ n1/4.

In earlier work, with consistent read and no regularization, get τ ∼ n1/2.
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General Convex (without OSC): Sublinear Rate

Theorem

Define ψ and γ as in the main theorem, have

E(F (xj)− F ∗) ≤ n(Lmaxγ
−1‖x0 − PS(x0)‖2 + 2(F (x0)− F ∗))

2(j + n)
.

Roughly ”1/j” behavior (sublinear rate)

Corollary

Assuming 4eΛ(τ + 1)2 ≤
√

n and setting ρ and γ = 1/2 as above, we have

E(F (xj)− F ∗) ≤ n(Lmax‖x0 − PS(x0)‖2 + F (x0)− F ∗)

j + n
.
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Computational Experiments

Implemented on a 40-core Intel Xeon, containing 4 sockets × 10 cores.

We don’t do “sampling with replacement” as in the algorithm described
above. Rather, each thread/core is assign a subset of gradient
components, and sweeps through these in order: “sampling without
replacement.”

The order of indices is shuffled periodically - either between every pass, or
less frequently.
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Unconstrained: 4-socket, 40-core Intel Xeon

min
x

‖Ax − b‖2 + 0.5‖x‖2

where A ∈ Rm×n is a Gaussian random matrix (m = 6000, n = 20000,
data size≈3GB, columns are normalized to 1). Λ ≈ 2.2. Choose γ = 1.
3-4 seconds to achieve the accuracy 10−5 on 40 cores.

5 10 15 20 25 30 35 40

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Synthetic Unconstrained QP: n = 20000 p = 10

# epochs

re
s
id

u
a
l

 

 

thread= 1
thread=10
thread=20
thread=30
thread=40

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

Synthetic Unconstrained QP: n = 20000

threads

s
p
e
e
d
u
p

 

 

Ideal
AsySCD−DW
Global Locking
Syn−GD

Wright (UW-Madison) Asynchronous Stochastic Optimization September 2014 41 / 44



Constrained: 4-socket, 40-core Intel Xeon

min
x≥0

(x − z)T (ATA + 0.5I )(x − z) ,

where A ∈ Rm×n is a Gaussian random matrix (m = 6000, n = 20000,
columns are normalized to 1) and z is a Gaussian random vector.
Lres/Lmax ≈ 2.2. Choose γ = 1.
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Experiments: 1-socket, 10-core Intel Xeon

min
x

1

2
‖Ax − b‖2 + λ‖x‖1,

where A ∈ Rm×n is a Gaussian random matrix (m = 12000, n = 20000,
data size≈3GB),b = A ∗ sprandn(n, 1, 20) + 0.01 ∗ randn(n, 1), and
λ = 0.2

√
m log(n). Lres/Lmax ≈ 2.2. Choose γ = 1.
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Conclusions

Old methods are interesting again, because of modern computers and
modern applications (particularly in machine learning).

We can analyze asynchronous parallel algorithms, with a computing
model that approximates reality pretty well.
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