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Introduction

Introduction

In this talk, we mainly consider the nonlinear minimization with
sparse and nonnegative constraints. By discussing tangent cone and
normal cone of sparse constraint, we give the first necessary
optimality conditions, α-Stability, T-Stability and N-Stability, and
the second necessary and sufficient optimality conditions for the
nonlinear problem.
By adopting Armijo-type stepsize rule, we present a gradient support
projection algorithmic framework for the problem and establish its
full convergence and computational complexity under mild
conditions. By doing some numerical experiments, we show the
excellent performance of the new algorithm for the least squares
without and with noise.

L Pan, S Zhou, N Xiu Optimality and Support Projection Algorithm for Sparsity Constrained Minimization May 2014 3 / 38



Introduction Optimality Conditions (I) Optimality Conditions (II) Gradient Support Projection Algorithms Numerical Experiments Summary

Introduction

Introduction

Model Representation
Sparsity and Nonnegativity Constrained Nonlinear Optimization

min f (x), s.t. ‖x‖0 ≤ s, x ≥ 0. (1)

where f (x) : RN → R is a continuously differentiable or twice
differentiable function, ‖x‖0 is the l0-norm of x .
The special case of problem (1)

min ‖Ax − b‖2 s.t.‖x‖0 ≤ s, x ≥ 0, (2)

where A ∈ RM×N , b ∈ RM , s < M < N and ‖ · ‖ is l2-norm.
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Model (I)

Introduction

We study the first and second order optimality conditions of the
following model

min f (x), s.t. ‖x‖0 ≤ s. (3)
Let S , {x ∈ RN | ‖x‖0 ≤ s}.

Support Projection

PS(x) =
{
y ∈ RN |yi = xi , i ∈ Is(x); yi = 0, i /∈ Is(x)

}
.

where Is(x) := {j1, j2, · · · , js} ⊆ {1, 2, · · · ,N} of indices of x with

min
i∈Is (x)

|xi | ≥ max
i /∈Is (x)

|xi |.
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Tangent Cone and Normal Cone

Optimality Conditions (I)

Definition of Bouligand Tangent Cone

For any nonempty set Ω ⊆ RN , its Bouligand Tangent Cone TB
Ω (x), and

corresponding Normal Cone NB
Ω (x) at point x ∈ Ω are defined as:

T B
Ω (x) :=

{
d ∈ RN

∣∣∣∣∣ ∃ {x
k} ⊂ Ω, lim

k→∞
x k = x , λk ≥ 0, k = 1,

2, · · · , such that lim
k→∞

λk (x k − x) = d

}
,

NB
Ω (x) :=

{
d ∈ RN | 〈d , z〉 ≤ 0, ∀ z ∈ T B

Ω (x)
}
,
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Tangent Cone and Normal Cone

Optimality Conditions (I)

Definition of Clarke Tangent Cone

The Clarke Tangent Cone TC
Ω (x) and corresponding Normal Cone NC

Ω (x)
at point x ∈ Ω are defined as:

T C
Ω (x) :=

 d ∈ RN

∣∣∣∣∣
∀ {x k} ⊂ Ω, ∀ {λk} ⊂ R+ with lim

k→∞
x k = x ,

limk→∞ λk = 0, ∃ {y k} such that lim
k→∞

y k = d
and x k + λky k ∈ Ω, k ∈ N

 ,

NC
Ω (x) :=

{
d ∈ RN | 〈d , z〉 ≤ 0, ∀ z ∈ T C

Ω (x)
}
.
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Tangent Cone and Normal Cone

Optimality Conditions (I)

Bouligand Tangent Cone of Sparse Set

Theorem
For any x ∈ S and letting Γ = supp(x), the Bouligand tangent cone and
corresponding normal cone of S at x are

TB
S (x) =

⋃
Υ

span { ei , i ∈ Υ ⊇ Γ, |Υ| ≤ s } (4)

NB
S (x) =

{
span { ei , i /∈ Γ } , if |Γ| = s
{0}, if |Γ| < s (5)

where ei ∈ RN is a vector whose the ith component is one and others are
zeros, span{ei , i ∈ Γ} denotes the subspace of RN spanned by
{ ei , i ∈ Γ}, and supp(x) = {i ∈ {1, · · · ,N} | xi 6= 0}.
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Tangent Cone and Normal Cone

Optimality Conditions (I)

Clarke Tangent Cone of Sparse Set

Theorem
For any x ∈ S and letting Γ = supp(x), then the Clarke tangent cone and
corresponding normal cone of S at x are

TC
S (x) = { d ∈ RN | supp(d) ⊆ Γ } = span { ei , i ∈ Γ } (6)

NC
S (x) = span { ei , i /∈ Γ } . (7)
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α-Stability, N-Stability and T -Stability

Optimality Conditions (I)

α-Stability, N-Stability and T -Stability

Definition
For real number α > 0, a vector x∗ ∈ S is called an α-stationary point,
N]-stationary point and T ]-stationary point of (3) if it respectively
satisfies the relation

α− stationary point: x∗ ∈ PS (x∗ − α∇f (x∗)) , (8)
N] − stationary point: 0 ∈ ∇f (x∗) + N]

S(x∗), (9)
T ] − stationary point: 0 = ‖∇]S f (x∗)‖, (10)

where ∇]S f (x∗) = argmin{ ‖x +∇f (x∗)‖ | x ∈ T ]
S(x∗) }, ] ∈ {B,C}

stands for the sense of Bouligand tangent cone or Clarke tangent cone.
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α-Stability, N-Stability and T -Stability

Optimality Conditions (I)

Relationship of the Three Kinds of Stability

Theorem
Under the concept of Bouligand tangent cone, for model (3) and α > 0,
if the vector x∗ ∈ S satisfies ‖x∗‖0 = s, then

α−stationary point =⇒ NB−stationary point ⇐⇒ TB−stationary point;

if the vector x∗ ∈ S satisfies ‖x∗‖0 < s, then

α−stationary point ⇐⇒ NB−stationary point ⇐⇒ TB−stationary point

⇐⇒ ∇f (x∗) = 0.
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α-Stability, N-Stability and T -Stability

Optimality Conditions (I)

Relationship of the Three Kinds of Stability

‖x∗‖0 = s ‖x∗‖0 < s

α – stationary point
|(∇f (x∗))i |

 = 0, i ∈ Γ

≤ 1
α

Ms (|x∗|), i /∈ Γ,
∇f (x∗) = 0

x∗ ∈ PS (x∗ − α∇f (x∗))

NB – stationary point
(∇f (x∗))i

 = 0, i ∈ Γ

∈ R, i /∈ Γ,
∇f (x∗) = 0

−∇f (x∗) ∈ NB
S (x∗)

T B – stationary point
(∇f (x∗))i

 = 0, i ∈ Γ

∈ R, i /∈ Γ,
∇f (x∗) = 0

∇B
S f (x∗) = 0
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α-Stability, N-Stability and T -Stability

Optimality Conditions (I)

Relationship of the Three Kinds of Stability

Theorem
Under the concept of Clarke tangent cone, we consider the problem (3).
For α > 0, if x∗ ∈ S then

α−stationary point =⇒ NC−stationary point ⇐⇒ TC−stationary point.
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α-Stability, N-Stability and T -Stability

Optimality Conditions (I)

Theorem
Let function f (x) satisfy Assumption 1, we have if x∗ ∈ S is the optimal
solution of (3), then for 0 < α < 1

Lf
, x∗ is also the α-stationary point. On

the contrary, let’s further assume that f (x) is convex, if ‖x∗‖0 < s and
x∗ is the α-stationary point of (3), then x∗ is the optimal solution of (3).
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Second Order Optimality Conditions

Optimality Conditions (I)

Theorem (Second Order Necessary Optimality)
If x∗ ∈ S is the optimal solution of (3) , then for 0 < α < 1

Lf
we have

d>∇2f (x∗)d ≥ 0, ∀ d ∈ TC
S (x∗). (11)

where ∇2f (x∗) is the Hessian matrix of f at x∗.
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Second Order Optimality Conditions

Optimality Conditions (I)

Theorem (Second Order Sufficient Optimality)
If x∗ ∈ S is an α-stationary point of (3) and satisfies

d>∇2f (x∗)d > 0, ∀ d ∈ TC
S (x∗), (12)

then x∗ is the strictly locally optimal solution of (3). Moreover, there
are η > 0 and δ > 0, for any x ∈ B(x∗, δ) ∩ S, it holds

f (x) ≥ f (x∗) + η‖x − x∗‖2. (13)
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Optimality Conditions (II)

Optimality Conditions (II)

Support projection and Tangent cones for (1)
PS∩RN

+
(x) = PS · PRN

+
(x).

Theorem
For x ∈ S ∩RN

+, by denoting RN
+(x) := { x ∈ RN | xi ≥ 0, i /∈ Γ }, it has

TB
S∩RN

+
(x) = TB

S (x) ∩ RN
+(x), NB

S∩RN
+

(x) = TB
S (x) ∩ (−RN

+(x))

TC
S∩RN

+
(x) = TC

S (x), NC
S∩RN

+
(x) = NC

S (x).

L Pan, S Zhou, N Xiu Optimality and Support Projection Algorithm for Sparsity Constrained Minimization May 2014 17 / 38



Introduction Optimality Conditions (I) Optimality Conditions (II) Gradient Support Projection Algorithms Numerical Experiments Summary

Optimality Conditions (II)

Optimality Conditions (II)

α-stationary point of (1) is defined as:

x∗ ∈ PS∩RN
+

(x∗ − α∇f (x∗)) . (14)

Theorem
For any α > 0, x∗ ∈ S ∩ RN

+ is α-stationary point of (1) if and only if

∇i f (x∗)
{

= 0, if i ∈ supp(x∗),
∈ [− 1

αMs(x∗),+∞), if i /∈ supp(x∗), (15)
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Optimality Conditions (II)

Optimality Conditions (II)

Relationship of the Three Kinds of Stability for model (1)

Theorem
For the model (1) and any α > 0.
A) Under the concept of Bouligand tangent cone, if ‖x∗‖0 = s, x∗ ≥ 0,
then

α−stationary point =⇒ NB−stationary point ⇐⇒ TB−stationary point.

B) Under the concept of Clarke tangent cone, if ‖x∗‖0 ≤ s, x∗ ≥ 0, then

α−stationary point =⇒ NC−stationary point ⇐⇒ TC−stationary point.
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Optimality Conditions (II)

Optimality Conditions (II)

Assumption 1. The gradient of the objective function f (x) is
Lipschitz with constant Lf over RN :

‖∇f (x)−∇f (y)‖ ≤ Lf ‖x − y‖, ∀ x , y ∈ RN . (16)
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Optimality Conditions (II)

α-stationary point of (1)

Theorem (Second Order Optimality for model (1))
If x∗ ∈ S ∩ RN

+ is the optimal solution of (1), then for 0 < α < 1
Lf
, x∗ is

also the α-stationary point of (1), and moreover,

d>∇2f (x∗)d ≥ 0, ∀ d ∈ TC
S (x∗). (17)

On the contrary, if x∗ ∈ S ∩ RN
+ is an α-stationary point of (1) and

d>∇2f (x∗)d > 0, ∀ d ∈ TC
S (x∗), (18)

then x∗ is the strictly locally optimal solution of (1). Moreover, there is
a γ > 0 and δ > 0, when any x ∈ B(x∗, δ) ∩ S ∩ RN

+, it holds

f (x) ≥ f (x∗) + γ‖x − x∗‖2. (19)
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Gradient Support Projection Algorithms

Gradient Support Projection Algorithm for (1)

Step 0 Initialize x0 = 0, Γ0 = supp(PS∩RN
+

(∇f (x0))), 0 < α0 <
1

Lf
,

0 < σ ≤ 1
4Lf

, 0 < β < 1, ε > 0. Set k ⇐ 0;

Step 1 Compute x̃ k+1 = PS∩RN
+

(
x k − α0∇f (x k )

)
;

Step 2 If supp(x̃ k+1) = Γk , then x k+1 = x̃ k+1, Γk+1 = supp(x k+1);
Else x k+1 = PS∩RN

+

(
x k − αk∇f (x k )

)
, Γk+1 = supp(x k+1),

where αk = α0β
mk and mk is the smallest positive integer

m such that

f (x k (α0β
m)) ≤ f (x k )− σ

2
‖xk (α0βm)−xk‖2

(α0βm)2 ,

here x k (α) = PS∩RN
+

(x k − α∇f (x k ));

Step 3 If ‖x k+1 − x k‖ ≤ ε, stop; Otherwise k ⇐ k + 1, go to Step 1.

L Pan, S Zhou, N Xiu Optimality and Support Projection Algorithm for Sparsity Constrained Minimization May 2014 22 / 38



Introduction Optimality Conditions (I) Optimality Conditions (II) Gradient Support Projection Algorithms Numerical Experiments Summary

Gradient Support Projection Algorithms

Gradient Support Projection Algorithm for (1)

Lemma
Let Assumption 1. hold and

{
xk} be the iterative point in Step 2 in

GSPA. Then

f (x k (α)) ≤


f (x k )− 1

2 ( 1
α
− Lf )‖x k (α)− x k‖2, α ∈

(
0, 1

Lf

)
f (x k )− σ

2
‖xk (α)−xk‖2

α2 , α ∈
[
1−
√

1−4σLf
2Lf

,
1+
√

1−4σLf
2Lf

]
.
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Gradient Support Projection Algorithms

Gradient Support Projection Algorithm for (1)

Theorem
Let Assumption 1 hold and the sequence {xk} be generated by GSPA, we
have
(i) lim

k→∞
‖xk+1−xk‖

αk
= 0;

(ii) any accumulation point of {xk} is the α-stationary point of (3);
(iii) limk→∞ ‖∇C

S∩RN
+
f (xk)‖ = 0.
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Gradient Support Projection Algorithms

Gradient Supp-Projection Algorithm for (2)

Let r(x) = 1
2‖Ax − b‖2, we consider the problem (2).

Step 0 Initialize x0 = 0, Γ0 = supp(PS∩RN
+

(AT b)), 0 < σ ≤ 1
4Lr

,
0 < β < 1, ε > 0. Set k ⇐ 0;

Step 1 Compute x̃ k+1 = PS∩RN
+

(
x k − αk

0∇r(x k )
)

;

αk
0 =

‖AT
Γk (b−Axk )‖2

‖A
Γk AT

Γk (b−Axk )‖2 .

Step 2 If supp(x̃ k+1) = Γk , then x k+1 = x̃ k+1, Γk+1 = supp(x k+1);
Else x k+1 = PS∩RN

+

(
x k − αk∇r(x k )

)
, Γk+1 = supp(x k+1),

where αk = αk
0β

mk and mk is the smallest positive integer
m such that

r(x k (αk
0β

m)) ≤ r(x k )− σ
2
‖xk (αk

0βm)−xk‖2

(αk
0βm)2

,

here x k (α) = PS∩RN
+

(x k − α∇r(x k ));

Step 3 If ‖x k+1 − x k‖ ≤ ε, stop; Otherwise k ⇐ k + 1, go to Step 1.
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Gradient Support Projection Algorithms

Gradient Supp-Projection Algorithm for (2)

Assumption 2. Matrix A is s-regular if any s of its columns are
linearly independent, namely,

d>A>Ad > 0, ∀ ‖d‖0 ≤ s.
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Gradient Support Projection Algorithms

Gradient Supp-Projection Algorithm for (2)

Theorem
Let the sequence {xk} be generated by GSPA, then {xk} converges to a
local minimizer of (2) if A is s-regular.
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Gradient Support Projection Algorithms

Gradient Supp-Projection Algorithm for (2)

Theorem
If Assumption 2 holds for matrix A, then the local solutions of problem
(2) exist and are finite. Moreover, if A and b satisfies

‖ΠΓib‖ 6= ‖ΠΓjb‖ with Γi 6= Γj , |Γi | ≤ s, |Γj | ≤ s (20)

where ‖ΠΓib‖ = bTAΓi (AT
Γi
AΓi )

−1AT
Γi
b. then problem (2) has a unique

solution.
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Numerical Experiments

Numerical Experiments

Greedy methods
MP — Matching pursuit[MZ]
OMP — Orthogonal MP[DM]
CoSaMP — Compressive sampling matching pursuit [NT]
SP — Subspace pursuit[DM]
NIHT — Iterative hard thresholding algorithm [B]
· · ·

[MZ] S. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Trans. Signal

Process., 41, pp. 3397-3415, 1993.

[NT] D. Needell and J.A. Tropp, CoSaMP: Iterative signal recovery from incomplete and inaccurate

samples, Appl. Comput. Harmon. Anal., 26, pp.301-32,2009.

[DM] W. Dai and O. Milenkovic, Subspace pursuit for compressive sensing signal reconstruction, IEEE

Trans. Inform. Theory, 55, pp.2230-2249, 2009.

[B] T Blumensath, Normalized iterative hard thresholding: Guaranteed stability and performance ,

Selected Topics in Signal Processing, IEEE Journal of, vol. 4. no. 2, pp. 298-309, 2010..
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Numerical Experiments

Numerical Experiments

Exact recovery

GSPA and NIHT for (2) with sparsity and nonnegativity
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Figure: Average results yielded by Non_NIHT and Non_GSPA.

L Pan, S Zhou, N Xiu Optimality and Support Projection Algorithm for Sparsity Constrained Minimization May 2014 30 / 38



Introduction Optimality Conditions (I) Optimality Conditions (II) Gradient Support Projection Algorithms Numerical Experiments Summary

Numerical Experiments

Numerical Experiments

Exact recovery

GSPA, NIHT , CoSaMP(short for CSMP) and SP for (2) with sparsity
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Figure: Average prediction error ‖Ax − b‖2 for each iteration with k = 5%N
over 40 simulations.
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Numerical Experiments

Numerical Experiments

Exact recovery: GSPA, NIHT , CoSaMP and SP for (2) with sparsity

Table: The average CPU time over 40 simulations with k = 5%N.

N M GSPA NIHT CSMP SP

N = 1000 M = N/4 0.0689 0.2583 0.1492 0.0961
M = N/2 0.0677 0.2459 0.1687 0.1307

N = 3000 M = N/4 0.5385 3.3210 1.9171 1.1197
M = N/2 0.5756 2.6228 1.8754 1.3627

N = 5000 M = N/4 1.5583 11.246 8.0507 4.5900
M = N/2 1.5114 8.0690 7.7457 5.0981

N = 7000 M = N/4 3.0050 20.761 19.698 10.729
M = N/2 2.9543 16.389 19.336 12.613

N = 10000 M = N/4 6.3880 52.257 51.680 27.864
M = N/2 5.9462 38.256 53.707 30.924
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Numerical Experiments

Numerical Experiments

Recovery with Noise

GSPA and NIHT for (2) with sparsity
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Figure: Average error ‖Ax − b‖2 for each iteration with k = 5%N over 40
simulations with noise.
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Numerical Experiments

Numerical Experiments

Recovery with Noise

GSPA and CoSaMP for (2) with sparsity
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Figure: Average error ‖Ax − b‖2 for each iteration with k = 5%N over 40
simulations with noise.
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Numerical Experiments

Numerical Experiments

Recovery with Noise

GSPA and SP for (2) with sparsity
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Figure: Average error ‖Ax − b‖2 for each iteration with k = 5%N over 40
simulations with noise.
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Numerical Experiments

Numerical Experiments

Recovery with Noise

GSPA, NIHT , CoSaMP and SP for (2) with sparsity

Table: The average CPU time over 40 simulations with M = N/4, s = 5%N
and noise.

N GSPA NIHT CSMP SP

CPU time

1000 0.0812 0.3226 116.87 0.1859
3000 0.5797 3.9317 1416.1 1.1631
5000 1.6221 9.6857 – – 4.9076
7000 3.2252 25.306 – – 11.556
10000 6.6369 38.440 – – 28.429
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Contributions We have established the first and second order
optimality conditions for problem (1) and (3), proposed a gradient
support projection algorithm for (3), and shown that the new
algorithm has elegant convergence and exceptional performance.
Future Work In the future, we will further consider conjugate
gradient or quasi-Newton direction in stead of negative gradient
direction to improve convergence speed. On the other hand, we will
think to develop this algorithm for optimization problems with
sparsity and other complex constraints.
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