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The Non-cooperative Game G
• An n-player non-cooperative game G wherein each player i = 1, · · · , n, an-

ticipating the rivals’ strategy tuple x−i ,
(
xj
)n
i 6=j=1

∈ X−i ,
n∏

i 6=j=1

X j, solves the

optimization problem:

minimize
xi∈X i

θi(x
i, x−i)

• X i ⊆ Rni is a closed convex set

• θi : Ω → R is a locally Lipschitz continuous and directionally differentiable

function defined on Ω ,
n∏
i=1

Ωi where each Ω i is an open convex set containing

X i

• A key structural assumption for convergence of distributed algorithm:

each θi(x) = fi(x)+gi(xi), with fi(x), dependent on all players’ strategy profile

x ,
(
xi
)n
i=1

, being twice continuously differentiable but not necessarily convex,

and gi(xi), dependent on player i’s strategy profile xi only is convex but not

necessarily differentiable.
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Quasi-Nash equilibrium: Definition and existence

Definition. A player profile x∗ ,
(
x∗,i
)n
i=1

is a QNE if for every i = 1, · · · , n:

θi(•, x∗,−i) ′(x∗,i;xi − x∗,i) ≥ 0, ∀xi ∈ X i.

Existence. Suppose each θi(x) = fi(x) + gi(x) with ∇xifi continuously differ-
entiable on Ω and gi(•, x−i) convex on X i that is compact and convex.

Proof by a fixed-point argument applied to the map:

Φ : x ,
(
xi
)n
i=1
∈ X ,

n∏
i=1

X i 7→ Φ(x) , (Φi(x))ni=1 ∈ X , where, for i = 1, · · · , n,

Φi(x) , argmin
zi∈X i

[
fi(z

i, x−i) + gi(z
i, x−i) +

α

2
‖ zi − xi ‖2

]
,

with α > 0 such that the minimand is strongly convex in zi for fixed x−i.

Remark. For existence, gi(x) can be fully dependent on the player profile x;
but for convergence of distributed algorithm, gi(xi) is only player dependent.
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The unified algorithm

The main idea:

• Employing player-convex surrogate objective functions and the information
from the most current iterate, non-overlapping groups of players update, in
parallel, their strategies from the solution of sub-games.

• Thus the algorithm is a mixture of the classical block Gauss-Seidel and
Jacobi iterations, applied in a way consistent with the game-theoretic setting
of the problem.

Two key families:

• The player groups: σ ν ,
{
σν1, · · · , σνκν

}
consists of κν pairwise disjoint subsets

of the players’ labels, for some integer κν > 0. Players in each group σνk solve
a sub-game; all such sub-games in iteration ν are solved in parallel.

N ν ,
κν⋃
k=1

σνk not necessarily equal to {1, · · · , n};

i.e., some players may not update in an iteration.
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• Given xν ∈ X , the bivariate surrogate objectives:
{
θ̂
σνk
i (xσ

ν
k;xν) : i ∈ σνk

}κν
k=1

in lieu of the original objectives
{
{θi}i∈σνk

}κν
k=1

.

• The subgames, denoted Gσ
ν
k
ν for k = 1, · · ·κν: the optimization problems of

the players in σνk are
minimize

xi∈X i
θ̂
σνk
i

 xi, xσ
ν
k;−i︸ ︷︷ ︸

subgame variables
xσ

ν
k

; xν︸︷︷︸
input to subgame
at iteration ν




i∈σνk

.

• The new iterate for a step size τσνk ∈ (0,1]

xν+1;σνk , xν;σνk + τσνk

 x̂ ν;σνk︸ ︷︷ ︸
solution to subgame

−xν;σνk

 .

• Need directional derivative consistency at limit x∞ of generated sequence:

θi(•, x∞,−i) ′(x∞,i;xi − x∞,i) ≥ θ̂
σtk
i (•, x∞,σtk;−i;x∞) ′(x∞,i;xi − x∞,i), ∀xi ∈ X i.
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An illustration. A 10-player game with the grouping:

σν = { {1,2}, {3,4,5}, {6,7,8,9} }
so that κν = 3 and N ν = {1, · · · ,9}, leaving out the 10th-player.

Players 1 and 2 update their strategies by solving a subgame G{1,2}ν defined
by the surrogate objective functions θ̂ {1,2}1 (•;xν) and θ̂

{1,2}
2 (•;xν).

In parallel, players 3, 4, and 5 update their strategies by solving a subgame
G{3,4,5}ν using the surrogate objective functions{

θ̂
{3,4,5}
3 (•;xν), θ̂ {3,4,5}4 (•;xν), θ̂ {3,4,5}5 (•;xν)

}
;

similarly for players 6 through 9.

The 10th player is not performing an update in the current iteration ν ac-

cording to the given grouping.
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Special cases: player groups

• Block Jacobi N ν = {1, · · · , n} and σνk may contains multiple elements.

• Point Jacobi κν = n; thus σνk = {k} for k = 1, · · ·n: each player i solves an
optimization problem:

minimize
xi∈X i

θ̂i(x
i;xν).

• Block Gauss-Seidel κν = 1 for all ν: only the players in the block σν1 update
their strategies that immediately become the inputs to the new iterate xν+1

while all other players j 6∈ σν1 keep their strategies at the current iterate xν,j.

• Point Gauss-Seidel κν = 1 and σν1 is a singleton.

• Above are deterministic player groups; also consider randomized player
groups: Let {σ1, · · ·σK} be a partition of {1, · · · , n}. At iteration ν, the subset
σν ⊆ {σ1, . . . , σK} of player groups is chosen randomly and independently from
the previous iterations, so that

Pr(σi ∈ σ ν) = pσi > 0,

There is a positive probability pσi, same at all iterations ν, for the subset σi

of players to be chosen to update their strategies.
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Special cases: surrogate objectives

• Standard convex case Suppose θi(•, x−i) is convex. For i ∈ σ νk , let

θ̂
σνk
i (xσ

ν
k; z) , θi(x

σνk , z−σ
ν
k) +

αi

2
‖xi − zi ‖2︸ ︷︷ ︸

regularization

, for some positive scalar αi

•Mixed convexity and differentiability Suppose θi(•, x−i) = gi(•, x−i)+fi(•, x−i),
where gi(•, x−i) is convex and fi(•, x−i) is differentiable. Let

θ̂
σνk
i (xσ

ν
k; z) , gi(x

σνk , z−σ
ν
k) + fi(z) +

∑
j∈σνk

∇zjfi(z)T(xj − zj )︸ ︷︷ ︸
partial linearization

+
αi

2
‖xi − zi ‖2

︸ ︷︷ ︸
convex in xσ

ν
k for fixed z

• Newton-type quadratic approximation Suppose ∇xiθi(•, x−i) exists. Let

θ̂
σνk
i (xσ

ν
k; z) , θi(z) +

∑
j∈σνk

∇xjθi(z)T(xj − zj ) + 1
2

∑
j,j ′∈σνk

(xj
′ − zj ′ )TB σνk;j,j

′
(xj − zj )︸ ︷︷ ︸

quadratic in xσ
ν
k for fixed z

,

B σνk;j,j
′

approximates mixed partial derivatives of θi(•, z−σ
ν
k) w.r.t. xj and xj

′
.
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Convergence analysis

Two approaches

• Contraction — showing that the sequence {xν}∞ν=1 contracts in the vector
sense by means of the assumption of a spectral radius condition of a key
matrix

• Potential — relying on the existence of a potential function that decreases
at each iteration.

Think about a system of linear equations: Ax = b

• (Generalized) diagonal dominance yields convergence under contraction.

• Symmetry of A yields the potential function: P (x) , 1
2
xTAx− bTx.
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Contraction approach

• An integer T > 0 and a fixed family
{
σ̂ t ,

{
σt1, · · · , σtκt

}}T
t=1

of index subsets
of the players’ labels that partitions {1, · · · , n}.

• Families of bivariate surrogate functions

θ̂
t

=
{
θ̂
σtk
i : i ∈ σtk

}κt
k=1

, for t = 1, · · · , T ,

such that for every pair (xσ
t
k;−i; z), the function θ̂

σtk
i (•, xσtk;−i; z) is convex.

• For each set σtk, let Gσ
t
k

t denote the subgame consisting of the players i ∈ σtk
with objective functions θ̂

σtk
i (•; z) for certain (known) iterate z to be specified.

• Let κν = κt and σνk = σtk for ν ≡ t modulo T and for all k = 1, · · · , κν; thus,

for each i = 1, · · · , n, θ̂
σνk
i = θ̂

σtk
i where ν ≡ t modulo T and σtk is the unique

index set containing i.

• Thus, each player i and the members in σtk will update their strategy tuple

exactly once every T iterations through the solution of the subgame Gσ
t
k

t .

• Finally, we take each step size τσνk = 1.
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A further illustration

Consider a 12-player game with T = 3 and with σ̂ 1 = {{1,2}, {3,5,6}},
σ̂ 2 = {{4,7,8}}, and σ̂ 3 = {{9}, {10,11,12}}.

Starting with x0 =
(
x0;i
)12

i=1
= x(0), we obtain after one iteration

x1 =
(
x1;{1,2}, x1;{3,5,6}, x0;4, x0;{7thru12}

)
.

The sub-vectors x1;{1,2} and x1;{3,5,6} mean that the players 1 and 2 update
their strategies by solving a 2-player subgame and simultaneously the players
3, 5, and 6 update their strategies by solving a 3-player subgame. The
remaining players 4, 7 through 12 do not update their strategy in this first
iteration.

The next two iterations yield, respectively,

x2 =
(
x1;{1,2}, x1;{3,5,6}, x2;{4,7,8}, x0;{9thru12} )

x3 =
(
x1;{1,2}, x1;{3,5,6}, x2;{4,7,8}, x3;{9}, x3;{10,11,12} ) .

The update of x2 employs x1 in defining the player objectives θ̂
{4,7,8}
4 (•;x1),

θ̂
{4,7,8}
7 (•;x1), and θ̂

{4,7,8}
8 (•;x1). Similarly, the update of x3 employs x2.
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After three iterations, we have completed a full cycle where all players have
updated their strategies exactly once, obtaining the new iterate x(1) = x3.

The next cycle of updates is then initiated according to the same partition{
σ̂ 1, σ̂ 2, σ̂ 3

}
and employs the same family of bivariate surrogate functions.

• group 1: θ̂
{1,2}
1 , θ̂

{1,2}
2︸ ︷︷ ︸

2-person subgame

, θ̂
{3,5,6}
3 , θ̂

{3,5,6}
5 , θ̂

{3,5,6}
6︸ ︷︷ ︸

3-person subgame︸ ︷︷ ︸
2 subgames solve in parallel

; parallel

• group 2: θ̂ {4,7,8}4 , θ̂
{4,7,8}
7 , θ̂

{4,7,8}
8︸ ︷︷ ︸

3-person subgame

; single game

• group 3: θ̂
{9}
9︸︷︷︸

single-player opt

, θ̂
{10,11,12}
10 , θ̂

{10,11,12}
11 , θ̂

{10,11,12}
12︸ ︷︷ ︸

3-person subgame︸ ︷︷ ︸
2 subgames solved in parallel

parallel:
single opt. + game

group 1
sequential

−−−−−−−−− > group 2:
sequential

−−−−−−−−− > group 3
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Set-up for assumptions

• Assume θ̂
σtk
i (xσ

t
k; z) = gi(xi)+f̂

σtk
i (xσ

t
k; z), where gi is convex and the (surrogate

objective)f̂
σtk
i (•; z) is twice continuously differentiable.

• f̂ σ
t
k

i (xσ
t
k; z) is strongly convex in xσ

t
k uniformly in z; i.e., ∃ γtk;ii > 0 such that

for all xi ∈ X i, all uσ
t
k ∈ X σtk and all z ∈ X ,(

xi − ui
)T ∇2

uiuif̂
σtk
i (uσ

t
k; z)

(
xi − ui

)
≥ γtk;ii ‖xi − ui ‖2.

• Further assume that each function ∇uif̂
σtk
i is continuously differentiable in

both arguments with bounded derivatives. Let

γtk;ij , sup
u
σt
k∈X σt

k; z∈X

∥∥∥∇2
ujuif̂

σtk
i (uσ

t
k; z)

∥∥∥ < ∞, ∀ i 6= j in σtk

γ̃ tk;i` , sup
u
σt
k∈X σt

k; z∈X

∥∥∥∇2
z`uif̂

σtk
i (uσ

t
k; z)

∥∥∥ < ∞, ∀ i ∈ σtk and ` = 1, · · · , n.

Let Γ , blkdiag
[

Γ t
]T
t=1

, where each Γ t , blkdiag
[

Γ t
k

]κt
k=1

and Γ t
k ,

[
γ tk;ij

]
i,j∈σtk

.

Let Γ̃ ,
[

Γ̃ ts
]T
t,s=1

, where each Γ̃ ts ,
[

Γ̃ ts
k,k ′

](κt,κs)

(k,k ′)=(1,1)
with Γ̃ ts

k,k ′ ,
[ (
γ̃ tk;ij

) ]j∈σs
k ′

i∈σtk
.

13



The comparison matrix: Γ , blkdiag
[

Γ
t
]T
t=1

, where each Γ
t
, blkdiag

[
Γ
t
k

]κt
k=1

and Γ
t
k ,

[
γ tk;ij

]
i,j∈σtk

, where
(

Γ
t
k

)
ij
,

{
γ tk;ii if i = j

−γ tk;ij otherwise
for i, j ∈ σtk.

Key assumption: The matrix Γ− Γ̃, which has all off-diagonal entries non-
positive (thus a Z-matrix), is also a P-matrix (thus a Minkowski matrix).

Writing Γ̃ = L̃ + D̃ + Ũ as the sum of the strictly lower triangular, diagonal,
and strictly upper triangular parts, respectively, we have

• Γ− L̃ is invertible and has a nonnegative inverse,

• the spectral radius of the (nonnegative) matrix
[

Γ− L̃
]−1 (

D̃ + Ũ
)

is less

than unity, or equivalently,

• ∃ positive scalars d tk;ij and d̃ tk;i` such that

γtk;iid
t
k;ii >

∑
i 6=j∈σtk

γ tk;ij d
t
k;ij +

n∑
`=1

γ̃ tk;i` d̃
t
k;i`, ∀ t = 1, · · · , T, k = 1, · · · , κt, i ∈ σtk.
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Potential Games
Definition. A family of functions {θi(x)}ni=1 on the set X admits

• an exact potential function P : Ω→ R if P is continuous such that for all
i, all x−i ∈ Ω−i, and all yi and zi ∈ Ωi,

P (yi, x−i)− P (zi, x−i) = θi(y
i, x−i)− θi(zi, x−i);

• a generalized potential function P : Ω → R if P is continuous such that
for all i, all x−i ∈ Ω−i, and all yi and zi ∈ Ωi,

θi(y
i, x−i) > θi(z

i, x−i) ⇒ P (yi, x−i)− P (zi, x−i) ≥ ξi(θi(y
i, x−i)− θi(zi, x−i)),

for some forcing functions ξi : R+ → R+, i.e., lim
ν→∞

ξi(tν) = 0⇒ lim
ν→∞

tν = 0.

Example Generalized ; exact:

minimize
x1∈R

θ1(x1, x2) , x1 | minimize
x2∈R

θ2(x1, x2) , x1x2 + x2

subject to −2 ≤ x1 ≤ 2 | subject to 1 ≤ x2 ≤ 3.

Generalized potential function: P (x1, x2) = x1x2 + x2. �

The potential function, if it exists, is employed to gauge the progress of the

algorithm.
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How to recognize the existence of a potential?

The convex case. Suppose that θi(•, x−i) is convex. Recalling its subdiffer-
ential, ∂xiθi(•, x−i), we define the multifunction

Θ(x) ,
n∏
i=1

∂xiθi(x), x ∈ X .

Among the following four statements, it holds that (a) ⇔ (b) ⇒ (c) ⇔ (d):

(a) Θ(x) is maximally cyclically monotone on Ω ,
n∏
i=1

Ω i;

(b) ∃ a convex function ψ(x) such that ∂ψ(x) = Θ(x) for all x ∈ Ω;

(c) ∃ a convex function ψ(x) on Ω and continuous functions Ai(x−i) on Ω−i

such that θi(x) = ψ(x) +Ai(x−i) for all x ∈ Ω and all i = 1, · · · , n;

(d) the family {θi(x)}ni=1 admits a convex exact potential function P (x).

If ∇xiθi(x) is differentiable, the existence of a (differentiable) potential is

related to the symmetry of the Jacobian of the vector function (∇xiθi(x))ni=1.
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Player selection rule is

• Essentially covering if ∃ an integer T ≥ 1 such that

N ν ∪ N ν+1 ∪ . . . ∪ N ν+T−1 = {1,2, . . . , n }, ∀ ν = 1,2, . . . ,

so that within every T iterations, all players will have updated their strategies
at least once.

[Unlike partitioning, the above index sets may overlap, resulting in some play-
ers updating their strategies more than once during these T iterations. ]

• Randomized if the players are chosen randomly, identically, and indepen-
dently from the previous iterations so that

Pr(j ∈ N ν) = pj ≥ pmin > 0, ∀ j = 1,2, . . . , n, ∀ν = 1,2, . . . .

Postulates on objectives and their surrogates:

• Each θi(x) = fi(x) + gi(xi) for some differentiable function fi and convex
function gi.

• Correspondingly, θ̂
σνk
i (xσ

ν
k; z) = gi(xi)+f̂

σνk
i (xσ

ν
k; z), where the family

{
f̂
σνk
i (•;xν)

}
i∈σνk

admits an exact potential function f̂σνk(•;x
ν) satisfying
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• Strong convexity: there exists a constant η > 0 such that

f̂σνk(x̃
σνk; y) ≥ f̂σνk(x

σνk; y) +∇
x
σν
k
f̂σνk(x

σνk; y)T
(
x̃σ

ν
k − xσνk

)
+
η

2
‖ x̃σνk − xσνk ‖2

for all x, x̃σ
ν
k ∈ X σνk, and y in X .

• Gradient consistency: ∇xifi(x)T(ui−xi) =
(
∇xif̂

σνk
i (•, xσνk;−i;x)|xi

)T
(ui−xi)

for all ui, xi ∈ X i, x−i ∈ X−i and i ∈ σνk.
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Convergence with constant step-size. Assume

• an exact potential function P exists;

• a scalar L > 0 exists such that ‖∇fi(x)−∇fi(x′)‖ ≤ L‖x−x′‖ for all x, x′ ∈ X
and all i = 1, · · · , n;

• a constant step-size τ ∈ (0,2η/L) is employed.

Then, for an essentially covering player selection rule, every limit point of the
iterates generated by the unified algorithm is a QNE of the game G. Same
holds with probability one for the randomized player selection rule.

Generalized potential games: 2 more restrictions:

• Point Gauss-Seidel, i.e., each σνk is a singleton;

• Tight upper-bound assumption:

θ̂σν(x
σν; y) ≥ θσν(x

σν; y−σ
ν

) and θ̂σν(x
σν;x) = θσν(x

σν;x−σ
ν

), ∀x, y ∈ X .
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Concluding remarks

• We have introduced and analyzed the convergence of a unified distributed
algorithm for computing a QNE of a multi-player game with non-smooth,
non-convex player objective functions and with decoupled convex constraints.

• The algorithm employs a family of surrogate objective functions to deal with
the non-convexity and non-differentiability of the original objective functions
and solves subgames in parallel involving deterministic or randomized choice
of non-overlapping groups of players.

• The convergence analysis is based on two approaches: contraction and
potential; the former relies on a spectral condition while the latter assumes
the existence of a potential function.

• Extension of the algorithm and analysis to games with coupled convex con-
straints can be done by introducing multipliers (or prices) of such constraints
that are updated in an outer iteration.

• Non-convex constraints are presently being researched.

Thank you!
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