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The Non-cooperative Game ¢

e An n-player non-cooperative game G wherein each player ¢t = 1,--- ,n, an-

n

n
—i A J
. eXx & ]| A7 solves the

i#j=1

ticipating the rivals’ strategy tuple z=* £ (z7)

optimization problem:

minimize 6;(z*, z ")

e X' CR™ is a closed convex set

e 0, : 2 — R is a locally Lipschitz continuous and directionally differentiable
n

function defined on Q £ H Q' where each Q% is an open convex set containing
1=1

Xi

e A key structural assumption for convergence of distributed algorithm:

each 0;(z) = fi(x)+g:(2"), with f;(x), dependent on all players’ strategy profile

T £ (:cl):;l being twice continuously differentiable but not necessarily convex,

and g;(z'), dependent on player i's strategy profile z* only is convex but not

necessarily differentiable.



Quasi-Nash equilibrium: Definition and existence

Definition. A player profile z* £ (z*%)"_, is a QNE if for every i=1,--- ,n
0;(e, %) (%" z* — ™) > 0, Va' € X’

Existence. Suppose each 0;,(x) = fi(x) + gi(x) with V.. f; continuously differ-
entiable on © and g;(e,27%) convex on X! that is compact and convex.

Proof by a fixed-point argument applied to the map:
n

Pzt (a)_ e XE][X' P(2) £ (Pi())iz, € X, where, fori=1,--- ,n,
i=1
A - i i XL Q)2
Pi(x) £ argmin | fi(z',a) +gi(z a7 + D |12~ o |
FASH S

with a > 0 such that the minimand is strongly convex in z* for fixed x—".

Remark. For existence, g;(xz) can be fully dependent on the player profile z;
but for convergence of distributed algorithm, g;(z*) is only player dependent.



T he unified algorithm

T he main idea:

e Employing player-convex surrogate objective functions and the information
from the most current iterate, non-overlapping groups of players update, in
parallel, their strategies from the solution of sub-games.

e Thus the algorithm is a mixture of the classical block Gauss-Seidel and
Jacobi iterations, applied in a way consistent with the game-theoretic setting
of the problem.

Two key families:

e The player groups: o? £ {o{, RN o } consists of k, pairwise disjoint subsets
of the players’ labels, for some integer x, > 0. Players in each group o/ solve
a sub-game; all such sub-games in iteration v are solved in parallel.

N, & Uag not necessarily equal to {1,--- ,n};
k=1

i.e., some players may not update in an iteration.



e Given z¥ € X, the bivariate surrogate objectives: {(/9;0’:(56‘71:;:13”) 1€ al’g} !
k=1
Ry

in lieu of the original objectives {{02-}@@,; Ny

e The subgames, denoted G7* for k= 1,---k,: the optimization problems of
the players in o} are

( ( \ \
minimize 9°* A i : ¥
< reX? ¢ — ' . ~~ ’
subgame variables  input to subgame
1 at iteration v
. 7 i€o]

e The new iterate for a step size 7, € (0, 1]

v

xu—l—l;a,’; A xV;UZ + 7-(7; pot o4 . xu;al€
solution to subgame
e Need directional derivative consistency at limit £° of generated sequence:

Hi(O,ZUOO’_i)/(CCOO’i; 2t xoo,z’) > é\id,i(.’:coo,az;—i; CU()O)/(:Coo,i; 2t zUoo,i)) \ o € X



An illustration. A 10-player game with the grouping:
o’ = {{1,2},{3,4,5},{6,7,8,9} }
so that x, =3 and N, = {1,---,9}, leaving out the 10th-player.

Players 1 and 2 update their strategies by solving a subgame 951’2} defined
by the surrogate objective functions 01{1’2}(-; x¥) and 92{1’2}(0; x").

In parallel, players 3, 4, and 5 update their strategies by solving a subgame
53’4’5} using the surrogate objective functions

{ 53{3,4,5}(.; mu)7 5}3,4,5}(.; LUV), é};{3,4,5}(.; LEV) } :

similarly for players 6 through 9.

The 10th player is not performing an update in the current iteration v ac-

cording to the given grouping.



Special cases: player groups
e Block Jacobi N, = {1,---,n} and o/ may contains multiple elements.

e Point Jacobi k, = n; thus of = {k} for k =1,..-n: each player i solves an
optimization problem:

minimize 6;(z%; z).
rieX!
e Block Gauss-Seidel k, = 1 for all v: only the players in the block ¢} update

their strategies that immediately become the inputs to the new iterate x’/fl
while all other players j & o} keep their strategies at the current iterate z*/.

e Point Gauss-Seidel k, =1 and o7 is a singleton.

e Above are deterministic player groups; also consider randomized player
groups: Let {01, -0k} be a partition of {1,--- ,n}. At iteration v, the subset
o’ C {o1,...,0x} Of player groups is chosen randomly and independently from
the previous iterations, so that

Pr(o; € 0”) = p,, > O,

There is a positive probability p,,, same at all iterations v, for the subset o;
of players to be chosen to update their strategies.



Special cases: surrogate objectives

e Standard convex case Suppose 6;(e,z~") is convex. For i € o/, let

oV v v v (67 . . L
07 (x%; 2) £ 0;,(x%, 2 %) + EZH ' — 2|2, for some positive scalar a;

A\ 7

regularization

e Mixed convexity and differentiability Suppose 6;(e,27") = g;(o, 27 ")+ fi(e,z7"),
where g;(e,z7") is convex and f;(e,x7*) is differentiable. Let

~ gV o o —oV . . (7 i i
0,7 (275 2) £ gi(@®, 27 + fi(2) + ) Vafi(2) (27 = &)+l o’ = 212
Jj€oy

partial linearization

-~

convex in z% for fixed z
e Newton-type quadratic approximation Suppose V.:0;(e,z7%) exists. Let
07 (27 2) 2 0:i(2) + Z Vabi(2) (2/ — 27 )+ 2 Z (af — 22 )BT (od — 27),
JET} J,3'€0},

quadratic in?"i for fixed z

BiJd" approximates mixed partial derivatives of 0;(e, z27%) w.r.t. =/ and 7.
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Convergence analysis

Two approaches

e Contraction — showing that the sequence {z"}°2 ; contracts in the vector

sense by means of the assumption of a spectral radius condition of a key
matrix

e Potential — relying on the existence of a potential function that decreases
at each iteration.

Think about a system of linear equations: Az = b
e (Generalized) diagonal dominance yields convergence under contraction.

e Symmetry of A yields the potential function: P(z) = %xTAx — by,



Contraction approach

e An integer T > 0 and a fixed family {¢' £ {ot,--- >Uﬁat}}tT=1 of index subsets
of the players’ labels that partitions {1,--- ,n}.

e Families of bivariate surrogate functions

~1 ~gt . " Ry
0 ={02-’“:7,€Jk} , fort=1,---,T,
k=1

such that for every pair (z%~%; 2), the function @“’z(o,az"i?—i; z) is convex.
e For each set ot, let gf’tf denote the subgame consisting of the players i € o}
with objective functions @."’i(o; z) for certain (known) iterate z to be specified.

o Let kK, = Kkt and o} = a,'; for v =t modulo T and for all k= 1,---,k,; thus,

ANV A ot
for each ¢ = 1,--- ,n, 6, = 6" where v =t modulo T and ¢! is the unique
index set containing «z.

e [ hus, each player z and the members in a}; will update their strategy tuple
exactly once every T iterations through the solution of the subgame gfi.
e Finally, we take each step size 7,» = 1.
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A further illustration

Consider a 12-player game with T = 3 and with &' = {{1,2},{3,5,6}},
5% ={{4,7,8}}, and &> = {{9},{10,11,12}}.

12

= x(0) we obtain after one iteration

Starting with 20 = (%)
i R (:Cl;{l,Q}’ L1356} 04 xO;{?thrulQ}) .

The sub-vectors z11{1:2} and x1{356} mean that the players 1 and 2 update
their strategies by solving a 2-player subgame and simultaneously the players
3, 5, and 6 update their strategies by solving a 3-player subgame. The
remaining players 4, 7 through 12 do not update their strategy in this first
iteration.

The next two iterations yield, respectively,

22 = (xl;{1,2}7xl;{3,5,6}7$2;{4,7,8}7a}0;{9thru12})

23 = (331;{1,2}’331;{3,5,6}’332;{4,7,8}7333;{9}7333;{10,11,12}),

The update of z2 employs z! in defining the player objectives 5}4’7’8}(0;901),
57{4’7’8}(0;:1;1), and 5§4’7’8}(o;:p1). Similarly, the update of 3 employs z=2.
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After three iterations, we have completed a full cycle where all players have
updated their strategies exactly once, obtaining the new iterate x(1) = 3.

The next cycle of updates is then initiated according to the same partition
{81,32,83} and employs the same family of bivariate surrogate functions.

e group 1: 51{1’2},@{1’2} , 5;3’5’6},55{3’5’6},56{3’5’6}; parallel

2-person subgame 3-person subgame

2 subgames solve in parallel

e group 2: 978 git78H giaTs}. single game

7

3—person§ubgame

) ~{9} ~{10,11,12} #{10,11,12} 7{10,11,12} parallel:
* group 3: 32/ 910 011 —_— 012 . single opt. 4+ game
§ing|e-player opt 3-person subgame )

2 subgames solved in parallel

sequential sequential
grfoup 1 - - — — — — — — — >group 2: — — — — — — — — — > group 3
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Set-up for assumptions

e Assume @U’i(:c"f’i; z) = gi(mi)—l—ﬁg’i(:c"fi; z), where g; is convex and the (surrogate
objective)ﬁ”’tf(o; z) is twice continuously differentiable.

o fi“i(x"fc;z) is strongly convex in z% uniformly in z; i.e., 3 ~L... > 0 such that
for all ' € X%, all u% € X% and all z € X,

(xi — ’U,i )TV5iuiﬁai(uaz; Z) <332 _ ’U’Z) 2 ’Y;;,ZZ H xi T ui H2

e Further assume that each function Vuiff’i is continuously differentiable in
both arguments with bounded derivatives. Let

A 2 7ot t . ..
,Y]i;ij - . Sutp vuﬂuzfz k(uakvz) H < o0, Vi 7’4:3 In O-]i
ukEXk; 2EX
Vi:ie = sup V2, F7(u 2) H < oo, Vi€o,andl{=1,--- ,n.

O't O't
ukEX k, ze€X

Let T 2 bikdiag [F*]]

._,» Whereeach ' £ blkdiag | /], and '} £ [%ﬁ;ij}

k=1

t

1,J€0},

T ~, A [= (Kiyks) o~ A " jET,
, where each M'** = [F,ﬁsk,} with /s, = [( X )] .

(kk)=(1,1) Kii) Jieot

LetT £ [I:ts}
t,s=1
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Ky

“where each T 2 blkdiag [F,ﬁ]
k=1

b r
—t A 4 —1 A ’ylgu |f 7 :] L. ¢
and [, = [’Yk:;z'jL , Where (rk>ij = e : for i,j € o7.

Key assumption: The matrix T — ', which has all off-diagonal entries non-
positive (thus a Z-matrix), is also a P-matrix (thus a Minkowski matrix).

Writing r =1L + D -+ U as the sum of the strictly lower triangular, diagonal,
and strictly upper triangular parts, respectively, we have

e I' — L is invertible and has a nonnegative inverse,

~1
e the spectral radius of the (nonnegative) matrix [I‘ L} (D —|—U> is less
than unity, or equivalently,

e 3 positive scalars df.;; and df.;, such that

k;ig

— — . t
fYk:zzdk:zz > Z ,yijdej—l_Z k:zﬁdk:zb Vit = 17 7T7k — 17 yKt, 1 € O
iFjEoy,
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Potential Games
Definition. A family of functions {6;(x)}"_, on the set X admits

e an exact potential function P : ()} — R if P is continuous such that for all
1, all 74 € 27, and all y* and z* € £,

P(yiax_i) - P(Ziax_i) — 92(:9’27:6_2) - Qi(ziax_i);
e a generalized potential function P : 2 — R if P is continuous such that
for all 2, all x7* € 27, and all y* and z* € {2,

el(ylvx_l) > Ql(zlax_l) = P(ylax_z) — P(Ziwx_i) Z gl(el(ylax_z) - ei(ziax_i)>7
for some forcing functions & : Ry — R4, i.e., lim &(t,) = 0= limt, = 0.
V—00 V—00

Example Generalized % exact:

minin%ize 91(:61,:82) =S 1 | mininﬁl{ize 92(:131,%2) £ r1x> + x>
Tri€ ToE
subject to -2 <z <2 | subjectto 1 <z <3.
Generalized potential function: P(x1,x2) = 122 + 2. O

The potential function, if it exists, is employed to gauge the progress of the
algorithm.
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How to recognize the existence of a potential?

The convex case. Suppose that 6;(e,27") is convex. Recalling its subdiffer-
ential, 9,.0;(e,x7%), we define the multifunction

O(z) £ []owbi(z), = € X.
=1
Among the following four statements, it holds that (a) < (b) = (c) & (d):

(a) ©(z) is maximally cyclically monotone on Q £ HQ"}
i=1
(b) 3 a convex function ¥ (z) such that o9y (x) = O(x) for all x € ;

(c) 3 a convex function ¥ (x) on € and continuous functions A;(z™*) on Q
such that 6;(z) = ¢ (x) + A;(z™?) forall z e Q and all i =1,--- ,n;

(d) the family {6;(z)}"_; admits a convex exact potential function P(x).

If V.0;(x) is differentiable, the existence of a (differentiable) potential is
related to the symmetry of the Jacobian of the vector function (V.6;(x));—;.

16



Player selection rule is
e Essentially covering if 4 an integer T' > 1 such that

N, UN 1 U...UN 17-1 = {1,2,...,n}, VYv=1,2,...,

so that within every T' iterations, all players will have updated their strategies
at least once.

[Unlike partitioning, the above index sets may overlap, resulting in some play-
ers updating their strategies more than once during these T iterations. |

e Randomized if the players are chosen randomly, identically, and indepen-
dently from the previous iterations so that

PrGeNY) = p; > pmin >0, Vi=1,2,...,n, Vv =1,2,....

Postulates on objectives and their surrogates:

e Each 0;(z) = fi(x) + g:(2*) for some differentiable function f; and convex
function g;.

e Correspondingly, é\i"g(xaz?; z) = gi(x")—kfi";(a:"z?; 2), where the family {fﬁ(o; a:”)}

14
zeak

admits an exact potential function ﬁ;(o;x”) satisfying
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e Strong convexity: there exists a constant n > 0 such that

2

for (@7 y) > for(a®y) + V o for (@ y)" (2% — 2% ) + g |z — 2%

for all z,xz% € X%, and y in X.

: : o~ . r o .
e Gradient consistency: V. fi(z)? (v’ —z') = (Vﬂfi"’f(o,xo’i?—l; :c)|mz-) (u* —x)

for all u!, z' € X%, x7* € X" and i € 0.
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Convergence with constant step-size. Assume
e an exact potential function P exists;

e a scalar L > 0 exists such that ||V fi(x) =V fi(z)|| < L||lx —2'|| for all z, 2’ € X
and all e =1,---  n,;

e a constant step-size 7 € (0,2n/L) is employed.

Then, for an essentially covering player selection rule, every limit point of the
iterates generated by the unified algorithm is a QNE of the game . Same
holds with probability one for the randomized player selection rule.

Generalized potential games: 2 more restrictions:
e Point Gauss-Seidel, i.e., each oy is a singleton;

e Tight upper-bound assumption:
é\gu(zcgu; y) > 0,(z7 :;y 7)) and é\gu(:cay; ) =05 (z ;277), Vz,y€ X.
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Concluding remarks

e \We have introduced and analyzed the convergence of a unified distributed
algorithm for computing a QNE of a multi-player game with non-smooth,
non-convex player objective functions and with decoupled convex constraints.

e T he algorithm employs a family of surrogate objective functions to deal with
the non-convexity and non-differentiability of the original objective functions
and solves subgames in parallel involving deterministic or randomized choice
of non-overlapping groups of players.

e T he convergence analysis is based on two approaches: contraction and
potential; the former relies on a spectral condition while the latter assumes
the existence of a potential function.

e Extension of the algorithm and analysis to games with coupled convex con-
straints can be done by introducing multipliers (or prices) of such constraints
that are updated in an outer iteration.

e Non-convex constraints are presently being researched.
T hank you!
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