Monotonically Positive Matrices

Jinyan Fan

Department of Mathematics, Shanghai Jiao Tong University

BICMR, September 3, 2014

This is joint work with Anwa Zhou

Outline of the talk

- Introduction of monotonically positive matrices
- Characterization via \mathcal{A} -truncated K-moment problem
- A semidefinite algorithm for checking monotonic positivity
- Examples of monotonically positive matrices

What are monotonically positive matrices?

A real symmetric $n \times n$ matrix A is called monotonically positive (MP) if there exist monotonically nondecreasing vectors $u_1, \dots, u_m \in \mathbb{R}^n$ such that

$$A = u_1 u_1^T + \dots + u_m u_m^T.$$

- *m* is called the length of the decomposition.
- The smallest *m* is called the MP-rank of *A*.
- The decomposition is called an MP-decomposition of *A*. Denote

$$\mathbb{MR}^n = \{x \in \mathbb{R}^n : x_1 \leq \cdots \leq x_n\}.$$

- A is MP \iff $A = UU^T$ with $U_i \in \mathbb{MR}^n$.
- $A \text{ is } \mathsf{MP} \Longrightarrow A \in \mathcal{S}_n^+.$

Properties of the MP cone

Denote the MP cone

$$\mathcal{MP}_n \coloneqq \left\{ \sum_i u_i u_i^T : u_i \in \mathbb{MR}^n
ight\}.$$

It is a proper cone,

i.e. closed, convex, pointed and full-dimensional.

The dual cone of the MP cone is

$$\mathcal{MP}_n^* := \{B \in \mathcal{S}_n : u^T B u \ge 0 \text{ for all } u \in \mathbb{MR}^n\}.$$

• It is also a proper cone.

Applications in order statistics

 Suppose (X₁,..., X_n) are n jointly distributed random variables. The corresponding order statistics are the X_i's arranged

$$X_{1:n} \leq X_{2:n} \leq \cdots \leq X_{n:n}.$$

• Suppose $x \in \mathbb{R}^n$ is random with $\mathbb{E}x = b$ and the covariance matrix C, where

$$C_{ij} = \mathbb{E}[(x_i - b_i)(x_j - b_j)], \quad i, j = 1, \dots, n.$$

Let $A \in \mathbb{R}^{n \times n}$ with

$$A_{ij} = \mathbb{E}(x_i x_j) = C_{ij} + b_i b_j, \quad i,j = 1, \dots, n.$$

Arnold-Balakrishnan-Nagaraja 1992

A basic problem in order statistics

Let $x \in \mathbb{R}^n$ be random, $Ex = b, A_{ij} = E(x_i x_j)$. Problem:

- Study the probability function of x that is supported in \mathbb{MR}^n ,
- Whether there exists a finite atomic Borel measure μ supported in MRⁿ such that

$$A=\int_{\mathbb{MR}^n}xx^{\,T}\,d\mu=\sum_{i=1}^mu_iu_i^{\,T},$$

where $u_i \in \mathbb{MR}^n$ are support points.

• Whether $A \in \mathcal{MP}_n$?

Examples

Example 1. Consider A given as

$$A=\left(egin{array}{cccc} 1 & 2 & 1 \ 2 & 4 & 2 \ 1 & 2 & 1 \end{array}
ight).$$

Obviously, A is of rank 1 and

$$A = u u^T = \left(egin{array}{c} 1 \ 2 \ 1 \end{array}
ight) \left(egin{array}{c} 1 \ 2 \ 1 \end{array}
ight)^T.$$

Since $u \notin \mathbb{MR}^n$, $A \notin \mathcal{MP}_n$.

Example 2. Consider A given as

$$A = \begin{pmatrix} 5 & 3 & 1 & -5 \\ 3 & 2 & 1 & -3 \\ 1 & 1 & 1 & -1 \\ -5 & -3 & -1 & 5 \end{pmatrix}$$

٠

Since A can be decomposed as

$$A = u_1 u_1^T + u_2 u_2^T = \left(egin{array}{c} -2 \ -1 \ 0 \ 2 \end{array}
ight) \left(egin{array}{c} -2 \ -1 \ 0 \ 2 \end{array}
ight)^T + \left(egin{array}{c} -1 \ -1 \ -1 \ -1 \ 1 \end{array}
ight) \left(egin{array}{c} -1 \ -1 \ -1 \ 1 \end{array}
ight)^T,$$

where $u_1, u_2 \in \mathbb{MR}^n$, $A \in \mathcal{MP}_n$.

Questions about MP

Given $A \in S_n$, how to check whether $A \in \mathcal{MP}_n$ or $A \notin \mathcal{MP}_n$?

- If $A \notin \mathcal{MP}_n$, can we get a certificate for this?
- If $A \in \mathcal{MP}_n$, how can we get an MP-decomposition for it?

Identifying vector

A symmetric matrix $A \in S_n$ can be identified by a vector consisting of its upper triangular entries:

$$\operatorname{vech}(A) = (A_{11}, \ldots, A_{1n}, A_{22}, \ldots, A_{2n}, A_{33}, \ldots, A_{nn})^T$$

• Let $E := \{(i, j) : 1 \le i \le j \le n\}$. Then, A can also be identified as a vector

$$\mathbf{a} \in \mathbb{R}^{E}$$
,

where \mathbb{R}^{E} denotes the space of vectors indexed by (i, j) in E.

• For example,
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$
,
 $E = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\},$
 $\mathbf{a} = (1,2,1,4,2,1)^T$.

\mathcal{A} -truncated moment sequence

Let \mathbb{N} be the set of nonnegative integers. For $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$, denote $|\alpha| := \alpha_1 + \dots + \alpha_n$. Let $\mathcal{A} := \{ \alpha \in \mathbb{N}^n : |\alpha| = 2 \}.$

• There is a one-to-one correspondence between E and A:

$$(i,j) \leftrightarrow e_i + e_j.$$

For example, when n = 3,

$$(1,1) \leftrightarrow (2,0,0)^T, \quad (1,2) \leftrightarrow (1,1,0)^T.$$

• $A \in \mathcal{S}_n$ can also be identified as

$$\mathbf{a}=(\mathbf{a}_lpha)_{lpha\in\mathcal{A}}\in\mathbb{R}^\mathcal{A}, \ \ \, \mathbf{a}_lpha=A_{ij} ext{ if } lpha=e_i+e_j \ (i\leq j).$$

- $\mathbb{R}^{\mathcal{A}}$ denotes the space of vectors indexed by $\alpha \in \mathcal{A}$.
- a is called an A-truncated moment sequence (A-tms).

Equivalent condition of MP

Recall that

$$A \in \mathcal{MP}_n { \Longleftrightarrow } A = u_1 u_1^T + \dots + u_m u_m^T, \,\, u_i \in \mathbb{MR}^n.$$

Let

$$K = \{x \in \mathbb{R}^n : x^T x - 1 = 0, x_1 \leq x_2 \leq \cdots \leq x_n\}.$$

- *K* is nonempty and compact.
- Every monotonic vector is a multiple of a vector in K.
- $A \in \mathcal{MP}_n \Longleftrightarrow \exists \
 ho_i > 0, u_i \in K$ such that

$$A = \rho_1 u_1 u_1^T + \dots + \rho_m u_m u_m^T.$$

\mathcal{A} -truncated K-moment problem

Let

$$egin{aligned} \mathcal{A} =& \{ lpha \in \mathbb{N}^n : | lpha | = 2 \}, \ K =& \{ x \in \mathbb{R}^n : \ x^T x - 1 = 0, x_1 \leq x_2 \leq \cdots \leq x_n \}. \end{aligned}$$

The \mathcal{A} -truncated K-moment problem (\mathcal{A} -TKMP) is to decide whether $\mathbf{a} \in \mathbb{R}^{\mathcal{A}}$ admits a measure μ on K such that

$$\mathbf{a}_{lpha} = \int_{K} x^{lpha} d\mu, \quad orall \, lpha \in \mathcal{A},$$

where $x^{\alpha} := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$.

- μ satisfying the above is called a *K*-representing measure for a.
- μ is called finitely atomic if its support is a finite set.
- μ is called *m*-atomic if its support has at most *m* distinct points.

Lasserre 2001; Nie 2003

Characterization via \mathcal{A} -TKMP

Let $\mathcal{A} = \{ \alpha \in \mathbb{N}^n : |\alpha| = 2 \}, K = \{ x \in \mathbb{R}^n : x^T x = 1, x_1 \leq \cdots \leq x_n \}.$ Since

$$\mathbf{a} \in \mathbb{R}^{\mathcal{A}}$$
 admits a K -measure $\Longleftrightarrow \mathbf{a}_{lpha} = \int_{K} x^{lpha} d\mu, \; orall \, lpha \in \mathcal{A},$

Then,

$$\begin{array}{l} A \in \mathcal{MP}_n \Longleftrightarrow A = \rho_1 u_1 u_1^T + \dots + \rho_m u_m u_m^T.\\ \Longleftrightarrow \text{ a admits an } m\text{-atomic } K\text{-measure, i.e.,}\\ \mathbf{a} = \rho_1 [u_1]_{\mathcal{A}} + \dots + \rho_m [u_m]_{\mathcal{A}},\\ \text{where } \rho_i > 0, \; u_i \in K, \; \text{and } \; [u_i]_{\mathcal{A}} := (u_i^{\alpha})_{\alpha \in \mathcal{A}}.\\ \end{array}$$
Denote

$$\mathcal{R}_{\mathcal{A}}(K) = \{\mathbf{a} : \mathbf{a} \text{ admits } a K \text{-measure}\}.$$

Then, $\mathcal{R}_{\mathcal{A}}(K)$ is the MP cone.

K-fullness and A-Riesz function

Let $\mathcal{A} = \{ \alpha \in \mathbb{N}^n : |\alpha| = 2 \}, K = \{ x \in \mathbb{R}^n : x^T x = 1, x_1 \leq \cdots \leq x_n \}.$ Denote

$$\mathbb{R}[x]_\mathcal{A}:=\mathsf{span}\{x^lpha:lpha\in\mathcal{A}\}=\mathsf{span}\{x_1^2,x_1x_2,\cdots,x_n^2\}.$$

• $\mathbb{R}[x]_{\mathcal{A}}$ is called K-full if $\exists p \in \mathbb{R}[x]_{\mathcal{A}}$ such that $p|_{K} > 0$.

• Choose
$$p = \sum_{i=1}^n x_i^2 \in \mathbb{R}[x]_{\mathcal{A}}$$
,
 $p(x) > 0$, $\forall x \in K \Longrightarrow \mathbb{R}[x]_{\mathcal{A}}$ is K-full.

For $\mathbf{a} \in \mathbb{R}^{\mathcal{A}}$, define an \mathcal{A} -Riesz function $\mathcal{L}_{\mathbf{a}}$ acting on $\mathbb{R}[x]_{\mathcal{A}}$ as

$$\mathcal{L}_{\mathbf{a}}(p) := \sum_{lpha \in \mathcal{A}} p_lpha a_lpha, \hspace{1em} ext{for all} \hspace{1em} p = \sum_{lpha \in \mathcal{A}} p_lpha x^lpha.$$

Denote $\langle p, \mathbf{a} \rangle := \mathcal{L}_{\mathbf{a}}(p)$ for convenience.

Localizing matrices and moment matrices

Let

$$\mathbb{N}_d^n := \{ lpha \in \mathbb{N}^n : | lpha | \le d \}, \quad \mathbb{R}[x]_d := \mathsf{span}\{x^lpha : lpha \in \mathbb{N}_d^n \}.$$

For $s \in \mathbb{R}^{\mathbb{N}_{2k}^n}$ and $q \in \mathbb{R}[x]_{2k}$, the *k*-th localizing matrix of q generated by s is the symmetric matrix $L_q^{(k)}(s)$ satisfying

$$\mathcal{L}_s(qp^2) = ext{vec}(p)^T(L_q^{(k)}(s)) ext{vec}(p), \; orall p \in \mathbb{R}[x]_{k - \lceil deg(q)/2 \rceil},$$

- vec(p) is the coefficient vector of p in the graded lexicographical ordering,
- $\lceil t \rceil$ is the smallest integer that is not smaller than t.
- When q = 1, L₁^(k)(s) is called a k-th order moment matrix and denoted as M_k(s).

Fialkow-Nie 2012; Helton-Nie 2012; Nie 2013

Localizing matrices and moment matrices

We have

$$egin{aligned} L_q^{(k)}(s) &= (\sum_lpha q_lpha s_{lpha+eta+\gamma})_{eta,\gamma\in\mathbb{N}_{k-\lceil deg(q)/2
ceil}},\ M_k(s) &= L_1^{(k)}(s) = (s_{eta+\gamma})_{eta,\gamma\in\mathbb{N}_k^n}. \end{aligned}$$

Denote

$$egin{aligned} h(x) &:= x^T x - 1, \ g(x) &:= (g_0(x), g_1(x), \dots, g_{n-1}(x)), \end{aligned}$$

where $g_0(x) = 1$, $g_1(x) = x_2 - x_1, \ldots, g_{n-1}(x) = x_n - x_{n-1}$. Then, K can be described equivalently as

$$K = \{x \in \mathbb{R}^n : h(x) = 0, g(x) \ge 0\}.$$

Example. If n = 2 and k = 2, the k-th localizing matrix of h generated by s is

$$L_{x_{1}^{2} \mid x_{2}^{2}}^{(2)}(s) = \begin{pmatrix} s_{(2,0)} + s_{(0,2)} - s_{(0,0)} & s_{(3,0)} + s_{(1,2)} - s_{(1,0)} & s_{(2,1)} + s_{(0,3)} - s_{(0,1)} \\ s_{(3,0)} + s_{(1,2)} - s_{(1,0)} & s_{(4,0)} + s_{(2,2)} - s_{(2,0)} & s_{(3,1)} + s_{(1,3)} - s_{(1,1)} \\ s_{(2,1)} + s_{(0,3)} - s_{(0,1)} & s_{(3,1)} + s_{(1,3)} - s_{(1,1)} & s_{(2,2)} + s_{(0,4)} - s_{(0,2)} \end{pmatrix}$$

The k-th localizing matrices of $g = (g_0, g_1)$ generated by s are:

$$L_{1}^{(2)}(s) = M_{2}(s) = \begin{pmatrix} s_{(0,0)} & s_{(1,0)} & s_{(0,1)} & s_{(2,0)} & s_{(1,1)} & s_{(0,2)} \\ s_{(1,0)} & s_{(2,0)} & s_{(1,1)} & s_{(3,0)} & s_{(2,1)} & s_{(1,2)} \\ s_{(0,1)} & s_{(1,1)} & s_{(0,2)} & s_{(2,1)} & s_{(1,2)} & s_{(0,3)} \\ s_{(2,0)} & s_{(3,0)} & s_{(2,1)} & s_{(4,0)} & s_{(3,1)} & s_{(2,2)} \\ s_{(1,1)} & s_{(2,1)} & s_{(1,2)} & s_{(3,1)} & s_{(2,2)} & s_{(1,3)} \\ s_{(0,2)} & s_{(1,2)} & s_{(0,3)} & s_{(2,2)} & s_{(1,3)} & s_{(0,4)} \end{pmatrix},$$

$$L_{x_{2}-x_{1}}^{(2)}(s) = \begin{pmatrix} s_{(0,1)}-s_{(1,0)} & s_{(1,1)}-s_{(2,0)} & s_{(0,2)}-s_{(1,1)} \\ s_{(1,1)}-s_{(2,0)} & s_{(2,1)}-s_{(3,0)} & s_{(1,2)}-s_{(2,1)} \\ s_{(0,2)}-s_{(1,1)} & s_{(1,2)}-s_{(2,1)} & s_{(0,3)}-s_{(1,2)} \end{pmatrix}.$$

٠

Flatness in TKMP

Let $K = \{x \in \mathbb{R}^n : h(x) = 0, g(x) \ge 0\}.$

Let $s \in \mathbb{R}^{\mathbb{N}^n_{2k}}$. A necessary condition for s to admits K-measure is

$$L_h^{(k)}(s) = 0, \quad L_{g_j}^{(k)}(s) \succeq 0, \quad j = 0, 1, \dots, n-1.$$

If, in addition, $rank M_{k-1}(s) = rank M_k(s)$, we say s is flat. Curto-Fialkow (2005) showed

s is flat
$$\implies$$
 s admits a unique K-measure μ

i.e.,

$$s=\rho_1[u_1]_{2k}+\ldots+\rho_m[u_m]_{2k},$$

where $ho_i >$ 0, $u_i \in K$, $m = \mathrm{rank}\, M_k(s)$, $[u_i]_{2k} := (u_i^{lpha})_{lpha \in N_{2k}^n}.$

Flat extensions and truncations

Let $\mathcal{A} = \{ \alpha \in \mathbb{N}^n : |\alpha| = 2 \}, K = \{ x \in \mathbb{R}^n : x^T x = 1, x_1 \leq \cdots \leq x_n \}.$

For $z \in \mathbb{R}^{\mathbb{N}_{2k}^n}$, denote $z|_{\mathcal{A}} = (z_{\alpha})_{\alpha \in \mathcal{A}}$.

- If $\mathbf{a} = z|_{\mathcal{A}}$, call z is an extension of \mathbf{a} , or \mathbf{a} is a truncation of z.
- If $\mathbf{a} = z|_{\mathcal{A}}$ and z is flat, call z is a flat extension of \mathbf{a} .
- If $\mathbf{a} = z|_{\mathcal{A}}$ and \mathbf{a} is flat, call \mathbf{a} is a flat truncation of z.

Fact: If $\mathbf{a} \in \mathbb{R}^{\mathcal{A}}$ has a flat extension, then \mathbf{a} admits a *K*-measure:

$$\mathbf{a}=z|_{\mathcal{A}}, z ext{ is flat} \Longrightarrow z = \int_{K} [x]_{2k} d\mu \Longrightarrow \mathbf{a} = \int_{K} [x]_{\mathcal{A}} d\mu.$$

Flat extensions and measures

The following statements are equivalent:

 $A \in \mathcal{MP}_n \iff \mathbf{a} \text{ admits a } K\text{-measure}$ $\iff \mathbf{a} \text{ admits a } m\text{-atomic } K\text{-measure, with } m \leq |\mathcal{A}|$ $\iff \mathbf{a} \text{ has a flat extension.}$

To check MP, it is enough to find a flat extension.

Questions: How to decide if \mathbf{a} has a flat extension?

- If yes, how to find it?
- If no, how can we get a certificate?

Linear optimization with moments

Let d > 2 be an even integer. Choose $F(x) \in \mathbb{R}[x]_d$,

$$F(\pmb{x}) = \sum_{\pmb{lpha} \in \mathbb{N}_d^n} F_{\pmb{lpha}} \pmb{x}^{\pmb{lpha}}.$$

Consider the linear optimization problem with moments:

$$(P): egin{array}{ccc} \eta = \min_{z} & \langle F, z
angle \ {f s.t.} & z|_{\mathcal{A}} = {f a}, z \in \mathcal{R}_d(K), \end{array}$$

where

 $\mathcal{R}_d(K) = \{ z \in \mathbb{R}^{\mathbb{N}_d^n} : z \text{ admits a } K \text{-measures} \}.$

Choices of F(x)

Note that

$$(P): \quad \begin{array}{ll} \eta = \min_{z} & \langle F, z \rangle \\ \text{s.t.} & z|_{\mathcal{A}} = \mathbf{a}, z \in \mathcal{R}_{d}(K), \end{array}$$

• Since
$$K$$
 is compact, $\mathbb{R}[x]_{\mathcal{A}}$ is K -full,

 $\implies \mathcal{F}(P)$ is compact convex,

 \implies (P) has a minimizer for all F.

 Choose F ∈ Σ_{n,d}, the set of all sum of squares polynomials in n variables with degree d.

Semidefinite relaxations

Recall $z \in \mathbb{R}^{\mathbb{N}^n_{2k}}$ is flat, if

$$egin{aligned} L_h^{(k)}(z) &= 0, \quad L_{g_j}^{(k)}(z) \succeq 0, \quad j = 0, 1, \dots, n-1, \ ext{rank} M_{k-1}(z) &= ext{rank} M_k(z). \end{aligned}$$

Denote

$$\Gamma^k_{\mathcal{A}}(K) = \left\{ z \in \mathbb{R}^{\mathbb{N}^n_{2k}} : L_h^{(k)}(z) = 0, L_{g_j}^{(k)}(z) \succeq 0, j = 0, 1, \cdots, n \right\},$$

 $\Upsilon^k_{\mathcal{A}}(K) = \left\{ z|_{\mathcal{A}} : z \in \Gamma^k_{\mathcal{A}}(K) \right\}.$

If $k < deg(\mathcal{A})/2$, $\Upsilon^k_{\mathcal{A}}(K)$ is defined to be $\mathbb{R}^{\mathcal{A}}$, by default. Then, $\Upsilon^1_{\mathcal{A}}(K) \supseteq \cdots \supseteq \Upsilon^k_{\mathcal{A}}(K) \supseteq \Upsilon^{k+1}_{\mathcal{A}}(K) \supseteq \cdots \supseteq \mathcal{R}_{\mathcal{A}}(K)$

and

$$\bigcap_{k=1}^{\infty} \Upsilon^k_{\mathcal{A}}(K) = \mathcal{R}_{\mathcal{A}}(K).$$

Semidefinite relaxations

Let $\Gamma^k_{\mathcal{A}}(K) = \Big\{ z \in \mathbb{R}^{\mathbb{N}^n_{2k}} : L_h^{(k)}(z) = 0, L_{g_j}^{(k)}(z) \succeq 0, j = 0, 1, \cdots, n \Big\}.$

$$(P): egin{array}{cc} \eta = \min_{z} & \langle F, z
angle \ {f s.t.} & z|_{\mathcal{A}} = {f a}, z \in \mathcal{R}_d(K). \end{array}$$

The k-th order semidefinite relaxation of (P) is

$$(SDR)_k: egin{array}{ccc} \eta_k = \min_z & \langle F, z
angle \ ext{s.t.} & z|_{\mathcal{A}} = ext{a}, z \in \Gamma^k_{\mathcal{A}}(K). \end{array}$$

Suppose $z^{*,k}$ is a minimizer of $(SDR)_k$.

•
$$\eta^k \leq \eta$$
 for all k .

• If $\mathbf{a} = z^{*,k}|_{\mathcal{A}} \in \mathcal{R}_{\mathcal{A}}(K)$, then $\eta^k = \eta$, $z^{*,k}$ is minimizer of (P), i.e., the relaxation $(SDR)_k$ is exact for solving (P).

A certificate for ${\bf a}$ admitting no measure

Let $\mathbf{a} \in \mathbb{R}^{\mathcal{A}}$, $K = \{x : h(x) = 0, (g_0(x), \dots, g_{n-1}(x)) \geq 0\}$,

Fact: Since $\mathcal{F}(P) \subseteq \mathcal{F}((SDR)_k)$, a admits no *K*-measure if the semidefinite relaxation

$$egin{aligned} L_h^{(k)}(z) &= 0, L_{g_j}^{(k)}(z) \succeq 0, j = 0, 1, \dots, n-1 \ z|_\mathcal{A} &= \mathbf{a}, z \in \mathbb{R}^{\mathbb{N}_{2k}^n} \end{aligned}$$

is infeasible for any $k \geq \deg(\mathcal{A})/2$.

Remark. Suppose K is compact and $\mathbb{R}[x]_{\mathcal{A}}$ is K-full. If a admits no K-measure, then for some k the above semidefinite relaxation is infeasible.

Nie, 2002

A semidefinite algorithm for checking MP

Step 0 Choose $F \in \Sigma_{n,d}$, let k := 2.

Step 1 Solve the k-th relaxation problem $(SDR)_k$. If it is infeasible, a doesn't admit a K-measure. Otherwise, compute a minimizer $z^{*,k}$. Let t := 1. Step 2 Let $w := z^{*,k}|_{2t}$.

If the rank condition is not satisfied, go to Step 4.

Step 3 Compute the finitely atomic measure μ admitted by w:

$$\mu = \rho_1 \delta(u_1) + \cdots + \rho_m \delta(u_m),$$

where $\rho_i > 0$, $u_i \in K$, $m = \operatorname{rank} M_t(w)$, $\delta(u_i)$ is the Dirac measure supported on the point u_i . Stop. Step 4 If t < k, set t := t + 1, go to Step 2; otherwise, set k := k + 1, go to Step 1.

Properties of the algorithm

The algorithm has the following properties:

- If $(SDR)_k$ is infeasible for some k, $A \notin \mathcal{MP}_n$.
- If $A \notin \mathcal{MP}_n$, the $(SDR)_k$ is infeasible for all k big enough.
- If A ∈ MP_n, for almost all generated F, we can asymptotically get an MP-decomposition of A, by solving the hierarchy of (SDR)_k for k = 2, 3,

Remark (finite convergence).

- If A ∈ MP_n, under some general conditions, which is almost necessary and sufficient, an MP-decomposition of A can often be obtained within finitely many steps.
- This always happens in numerical experiments.

Numerical experiments

- Choose $F = [x]_{d/2}^T H^T H[x]_{d/2}$, where $[x]_{d/2} := (x^{\alpha})_{\alpha \in \mathbb{N}_{d/2}^n}$, *H* is a random square matrix obeying Gaussian distribution.
- $(SDR)_k$ is solved by GloptiPoly 3 and SeDuMi.
- The rank condition is checked numerically with SVD.

The rank of a matrix is evaluated as the number of its singular values that are greater than or equal to 10^{-6} .

• Henrion & Lasserre's method is used to compute an *m*-atomic *K*-measure for *w*.

Example 1. Consider A given as

$$A = \left(\begin{array}{ccccccccccccc} 8 & 6 & 6 & 2 & 2 & 0 & 0 \\ 6 & 5 & 4 & 1 & 0 & -1 & -2 \\ 6 & 4 & 5 & 2 & 3 & 1 & 2 \\ 2 & 1 & 2 & 1 & 2 & 1 & 2 \\ 2 & 0 & 3 & 2 & 5 & 3 & 6 \\ 0 & -1 & 1 & 1 & 3 & 2 & 4 \\ 0 & -2 & 2 & 2 & 6 & 4 & 8 \end{array}\right).$$

• A has rank 2.

• A can be decomposed as

where $u_1 \notin \mathbb{MR}^n$, $u_2 \in \mathbb{MR}^n$.

 The algorithm terminates at Step 1 with k = 2, i.e. (SDR)_k is infeasible.

So, $A \notin \mathcal{MP}_n$.

Example 2. Consider A given as

$$A = \left[egin{array}{ccccccccc} 2 & 1 & 0 & 0 & 0 & 0 & 1 \ 1 & 2 & 1 & 0 & 0 & 0 & 0 \ 0 & 1 & 2 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 2 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 2 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 & 2 & 1 \ 1 & 0 & 0 & 0 & 0 & 1 & 2 \end{array}
ight].$$

- A is symmetric diagonally dominant, $A \in \mathcal{S}_n^+$.
- The algorithm terminates at Step 1 with k = 2, i.e. (SDR)_k is infeasible.

So, $A \notin \mathcal{MP}_n$.

Example 3. Consider A given as

$$A = \left[egin{array}{cccccccc} 6 & 3 & 0 & -3 & -6 \ 3 & 2 & 1 & 0 & -1 \ 0 & 1 & 2 & 3 & 4 \ -3 & 0 & 3 & 6 & 9 \ -6 & -1 & 4 & 9 & 14 \end{array}
ight].$$

Since

- The algorithm terminates at Step 3 with k = 3.
- It gives an MP-decomposition $A = \sum\limits_{i=1}^2
 ho_i u_i u_i^T$ with

 $\begin{aligned} \rho_1 &= 7.5000, \quad u_1 = (-0.4472, -0.4472, -0.4472, -0.4472, -0.4472)^T, \\ \rho_2 &= 22.5000, \quad u_2 = (-0.4472, -0.1491, 0.1491, 0.4472, 0.7454)^T. \end{aligned}$

 The length of the MP-decomposition is shorter, which shows an advantage of the algorithm.

Example 4. Consider A given as

	290	221	195	102	-100	-188	-289]
	221	170	152	76	-86	-150	-222	
	195	152	139	64	-91	-143	-198	
A =	102	76	64	40	-20	-52	-100	.
	-100	-86	-91	-20	108	118	110	
	-188	-150	-143	-52	118	172	194	
	-289	-222	-198	-100	110	194	290	

Since A has the decomposition

$$A = \begin{bmatrix} -9\\ -6\\ -4\\ -4\\ -3\\ 3\\ 8\\ 8 \end{bmatrix}^{T} + \begin{bmatrix} -9\\ -7\\ -7\\ -2\\ 7\\ 9\\ 9\\ 9 \end{bmatrix}^{T} + \begin{bmatrix} -8\\ -7\\ -7\\ -2\\ 7\\ 9\\ 9\\ 9 \end{bmatrix}^{T} + \begin{bmatrix} -8\\ -7\\ -7\\ -2\\ 7\\ 9\\ 9\\ 9 \end{bmatrix}^{T} + \begin{bmatrix} -8\\ -7\\ -7\\ -2\\ 7\\ 9\\ 9\\ 9 \end{bmatrix}^{T} + \begin{bmatrix} -8\\ -6\\ -5\\ -4\\ 1\\ 1\\ 8 \end{bmatrix} \begin{bmatrix} -8\\ -6\\ -5\\ -4\\ 1\\ 1\\ 8 \end{bmatrix}^{T},$$

• The algorithm terminates at Step 3 with k = 3.

• It gives an MP-decomposition
$$A = \sum\limits_{i=1}^4
ho_i u_i u_i^T$$
 with

$$\begin{split} \rho_1 &= 127.9059, \ u_1 = (-0.5860, -0.3835, -0.2417, -0.2417, -0.2417, 0.2732, 0.5096)^T, \\ \rho_2 &= 226.0146, \ u_2 = (-0.5817, -0.4083, -0.3053, -0.3053, -0.0864, 0.0120, 0.5485)^T, \\ \rho_3 &= 478.9378, \ u_3 = (-0.4361, -0.3729, -0.3655, -0.1258, 0.3350, 0.4208, 0.4818)^T, \\ \rho_4 &= 376.1435, \ u_4 = (-0.4569, -0.3532, -0.3516, -0.1017, 0.3463, 0.4542, 0.4542)^T. \end{split}$$

Conclusions

- We introduce the MP matrices.
- We formulate the problem of checking MP as a linear optimization with moments.
- A semidefinite algorithm is proposed for checking whether a given symmetric matrix A is MP or not.
 - If $A \notin \mathcal{MP}_n$, we can give a certificate.
 - If $A \in \mathcal{MP}_n$, we can give an MP-decomposition for it.

Thank you very much!