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Outline of the talk

• Introduction of monotonically positive matrices

• Characterization via A-truncated K -moment problem

• A semidefinite algorithm for checking monotonic positivity

• Examples of monotonically positive matrices
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What are monotonically positive matrices?

A real symmetric n × n matrix A is called monotonically positive
(MP) if there exist monotonically nondecreasing vectors
u1, · · · ,um ∈ Rn such that

A = u1uT
1 + · · ·+ umuT

m .

• m is called the length of the decomposition.
• The smallest m is called the MP-rank of A.
• The decomposition is called an MP-decomposition of A.

Denote
MRn = {x ∈ Rn : x1 ≤ · · · ≤ xn }.

• A is MP ⇐⇒ A = UUT with Ui ∈MRn .
• A is MP =⇒ A ∈ S+n .

3 / 38



Properties of the MP cone

Denote the MP cone

MPn :=

{∑
i

uiuT
i : ui ∈MRn

}
.

• It is a proper cone,
i.e. closed, convex, pointed and full-dimensional.

The dual cone of the MP cone is

MP∗n := {B ∈ Sn : uTBu ≥ 0 for all u ∈MRn }.

• It is also a proper cone.
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Applications in order statistics

• Suppose (X1, . . . ,Xn) are n jointly distributed random variables.
The corresponding order statistics are the X ′i s arranged

X1:n ≤ X2:n ≤ · · · ≤ Xn :n .

• Suppose x ∈ Rn is random with Ex = b and the covariance
matrix C , where

Cij = E[(xi − bi )(xj − bj )], i , j = 1, . . . ,n .

Let A ∈ Rn×n with

Aij = E(xixj ) = Cij + bibj , i , j = 1, . . . ,n .

Arnold-Balakrishnan-Nagaraja 1992
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A basic problem in order statistics

Let x ∈ Rn be random, Ex = b,Aij = E(xixj ).
Problem:

• Study the probability function of x that is supported in MRn ,
• Whether there exists a finite atomic Borel measure µ supported
in MRn such that

A =

∫
MRn

xxTdµ =
m∑
i=1

uiuT
i ,

where ui ∈MRn are support points.
• Whether A ∈MPn?
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Examples

Example 1. Consider A given as

A =

 1 2 1
2 4 2
1 2 1

 .
Obviously, A is of rank 1 and

A = uuT =

 1
2
1


 1

2
1


T

.

Since u /∈MRn , A /∈MPn .
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Example 2. Consider A given as

A =


5 3 1 −5
3 2 1 −3
1 1 1 −1
−5 −3 −1 5

 .
Since A can be decomposed as

A = u1uT
1 + u2uT

2 =


−2
−1
0
2




−2
−1
0
2


T

+


−1
−1
−1
1




−1
−1
−1
1


T

,

where u1,u2 ∈MRn , A ∈MPn .
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Questions about MP

Given A ∈ Sn , how to check whether A ∈MPn or A /∈MPn?

• If A /∈MPn , can we get a certificate for this?
• If A ∈MPn , how can we get an MP-decomposition for it?
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Identifying vector

A symmetric matrix A ∈ Sn can be identified by a vector consisting of
its upper triangular entries:

vech(A) = (A11, . . . ,A1n ,A22, . . . ,A2n ,A33, . . . ,Ann)
T .

• Let E := {(i , j ) : 1 ≤ i ≤ j ≤ n}. Then, A can also be identified
as a vector

a ∈ RE ,

where RE denotes the space of vectors indexed by (i , j ) in E .

• For example, A =

 1 2 1
2 4 2
1 2 1

,

E = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)},
a = (1, 2, 1, 4, 2, 1)T .
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A-truncated moment sequence

Let N be the set of nonnegative integers.
For α = (α1, · · · , αn) ∈ Nn , denote |α| := α1 + · · ·+ αn . Let

A := {α ∈ Nn : |α| = 2}.

• There is a one-to-one correspondence between E and A:

(i , j ) ↔ ei + ej .

For example, when n = 3,

(1, 1)↔ (2, 0, 0)T , (1, 2)↔ (1, 1, 0)T .

• A ∈ Sn can also be identified as

a = (aα)α∈A ∈ RA, aα = Aij if α = ei + ej (i ≤ j ).

• RA denotes the space of vectors indexed by α ∈ A.
• a is called an A-truncated moment sequence (A-tms).
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Equivalent condition of MP

Recall that

A ∈MPn⇐⇒A = u1uT
1 + · · ·+ umuT

m , ui ∈MRn .

Let
K = {x ∈ Rn : xTx − 1 = 0, x1 ≤ x2 ≤ · · · ≤ xn }.

• K is nonempty and compact.
• Every monotonic vector is a multiple of a vector in K .
• A ∈MPn ⇐⇒∃ ρi > 0,ui ∈ K such that

A = ρ1u1uT
1 + · · ·+ ρmumuT

m .
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A-truncated K -moment problem
Let

A ={α ∈ Nn : |α| = 2},

K ={x ∈ Rn : xTx − 1 = 0, x1 ≤ x2 ≤ · · · ≤ xn }.

The A-truncated K -moment problem (A-TKMP) is to decide
whether a ∈ RA admits a measure µ on K such that

aα =

∫
K

xαdµ, ∀α ∈ A,

where xα := xα1
1 · · · xαn

n .
• µ satisfying the above is called a K -representing measure for a.
• µ is called finitely atomic if its support is a finite set.
• µ is called m-atomic if its support has at most m distinct points.

Lasserre 2001; Nie 2003
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Characterization via A-TKMP
Let A = {α ∈ Nn : |α| = 2},K = {x ∈ Rn : xTx = 1, x1 ≤ · · · ≤ xn }.

Since

a ∈ RA admits a K -measure⇐⇒ aα =

∫
K

xαdµ, ∀α ∈ A,

Then,
A ∈MPn ⇐⇒ A = ρ1u1uT

1 + · · ·+ ρmumuT
m .⇐⇒ a admits an m-atomic K -measure, i.e.,

a = ρ1[u1]A + · · ·+ ρm [um ]A,

where ρi > 0, ui ∈ K , and [ui ]A := (uαi )α∈A.
Denote

RA(K ) = {a : a admits a K -measure}.
Then, RA(K ) is the MP cone.
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K -fullness and A-Riesz function

Let A = {α ∈ Nn : |α| = 2},K = {x ∈ Rn : xTx = 1, x1 ≤ · · · ≤ xn }.

Denote

R[x ]A := span{xα : α ∈ A} = span{x 2
1 , x1x2, · · · , x 2

n }.

• R[x ]A is called K -full if ∃p ∈ R[x ]A such that p|K > 0.
• Choose p =

∑n
i=1 x 2

i ∈ R[x ]A,
p(x ) > 0, ∀x ∈ K =⇒ R[x ]A is K -full.

For a ∈ RA, define an A-Riesz function La acting on R[x ]A as

La(p) :=
∑
α∈A

pαaα, for all p =
∑
α∈A

pαxα.

Denote 〈p, a〉 := La(p) for convenience.
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Localizing matrices and moment matrices
Let

Nn
d := {α ∈ Nn : |α| ≤ d}, R[x ]d := span{xα : α ∈ Nn

d }.

For s ∈ RNn
2k and q ∈ R[x ]2k , the k -th localizing matrix of q

generated by s is the symmetric matrix L(k)
q (s) satisfying

Ls(qp2) = vec(p)T (L(k)
q (s)) vec(p), ∀p ∈ R[x ]k−ddeg(q)/2e,

• vec(p) is the coefficient vector of p in the graded lexicographical
ordering,

• dte is the smallest integer that is not smaller than t .
• When q = 1, L(k)

1 (s) is called a k -th order moment matrix and
denoted as Mk (s).

Fialkow-Nie 2012; Helton-Nie 2012; Nie 2013

16 / 38



Localizing matrices and moment matrices

We have

L(k)
q (s) = (

∑
α

qαsα+β+γ)β,γ∈Nn
k−ddeg(q)/2e

,

Mk (s) = L(k)
1 (s) = (sβ+γ)β,γ∈Nn

k
.

Denote

h(x ) :=xTx − 1,

g(x ) :=(g0(x ), g1(x ), . . . , gn−1(x )),

where g0(x ) = 1, g1(x ) = x2 − x1, . . . , gn−1(x ) = xn − xn−1.
Then, K can be described equivalently as

K = {x ∈ Rn : h(x ) = 0, g(x ) ≥ 0}.
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Example. If n = 2 and k = 2, the k -th localizing matrix of h
generated by s is

L(2)
x2
1+x

2
2−1
(s) =

 s(2,0)+s(0,2)−s(0,0) s(3,0)+s(1,2)−s(1,0) s(2,1)+s(0,3)−s(0,1)
s(3,0)+s(1,2)−s(1,0) s(4,0)+s(2,2)−s(2,0) s(3,1)+s(1,3)−s(1,1)
s(2,1)+s(0,3)−s(0,1) s(3,1)+s(1,3)−s(1,1) s(2,2)+s(0,4)−s(0,2)

 .

The k -th localizing matrices of g = (g0, g1) generated by s are:

L(2)
1 (s) = M2(s) =



s(0,0) s(1,0) s(0,1) s(2,0) s(1,1) s(0,2)
s(1,0) s(2,0) s(1,1) s(3,0) s(2,1) s(1,2)
s(0,1) s(1,1) s(0,2) s(2,1) s(1,2) s(0,3)
s(2,0) s(3,0) s(2,1) s(4,0) s(3,1) s(2,2)
s(1,1) s(2,1) s(1,2) s(3,1) s(2,2) s(1,3)
s(0,2) s(1,2) s(0,3) s(2,2) s(1,3) s(0,4)


,

L(2)
x2−x1(s) =

 s(0,1)−s(1,0) s(1,1)−s(2,0) s(0,2)−s(1,1)
s(1,1)−s(2,0) s(2,1)−s(3,0) s(1,2)−s(2,1)
s(0,2)−s(1,1) s(1,2)−s(2,1) s(0,3)−s(1,2)

 .
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Flatness in TKMP

Let K = {x ∈ Rn : h(x ) = 0, g(x ) ≥ 0}.

Let s ∈ RNn
2k . A necessary condition for s to admits K -measure is

L(k)
h (s) = 0, L(k)

gj (s) � 0, j = 0, 1, . . . ,n − 1.

If, in addition, rankMk−1(s) = rankMk (s), we say s is flat.

Curto-Fialkow (2005) showed

s is flat =⇒ s admits a unique K -measure µ

i.e.,
s = ρ1[u1]2k + . . .+ ρm [um ]2k ,

where ρi > 0, ui ∈ K , m = rankMk (s), [ui ]2k := (uαi )α∈N n
2k
.
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Flat extensions and truncations

Let A = {α ∈ Nn : |α| = 2},K = {x ∈ Rn : xTx = 1, x1 ≤ · · · ≤ xn }.

For z ∈ RNn
2k , denote z |A = (zα)α∈A.

• If a = z |A, call z is an extension of a, or a is a truncation of z .
• If a = z |A and z is flat, call z is a flat extension of a.
• If a = z |A and a is flat, call a is a flat truncation of z .

Fact: If a ∈ RA has a flat extension, then a admits a K -measure:

a = z |A, z is flat =⇒ z =

∫
K
[x ]2kdµ =⇒ a =

∫
K
[x ]Adµ.
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Flat extensions and measures

The following statements are equivalent:

A ∈MPn ⇐⇒ a admits a K -measure⇐⇒ a admits a m-atomic K -measure, with m ≤ |A|⇐⇒ a has a flat extension.

To check MP, it is enough to find a flat extension.

Questions: How to decide if a has a flat extension?
• If yes, how to find it?
• If no, how can we get a certificate?

Nie 2012.
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Linear optimization with moments

Let d > 2 be an even integer. Choose F (x ) ∈ R[x ]d ,

F (x ) =
∑
α∈Nn

d

Fαxα.

Consider the linear optimization problem with moments:

(P) :
η = min

z
〈F , z 〉

s.t. z |A = a, z ∈ Rd(K ),

where
Rd(K ) = {z ∈ RNn

d : z admits a K -measures}.
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Choices of F (x )

Note that

(P) :
η = min

z
〈F , z 〉

s.t. z |A = a, z ∈ Rd(K ),

• Since K is compact, R[x ]A is K -full,
=⇒ F(P) is compact convex,
=⇒ (P) has a minimizer for all F .

• Choose F ∈ Σn ,d , the set of all sum of squares polynomials
in n variables with degree d .
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Semidefinite relaxations
Recall z ∈ RNn

2k is flat, if

L(k)
h (z ) = 0, L(k)

gj (z ) � 0, j = 0, 1, . . . ,n − 1,

rankMk−1(z ) = rankMk (z ).

Denote

Γ k
A(K ) =

{
z ∈ RNn

2k : L(k)
h (z ) = 0,L(k)

gj (z ) � 0, j = 0, 1, · · · ,n
}
,

Υk
A(K ) =

{
z |A : z ∈ Γ k

A(K )
}
.

If k < deg(A)/2, Υk
A(K ) is defined to be RA, by default. Then,

Υ1
A(K ) ⊇ · · · ⊇ Υk

A(K ) ⊇ Υk+1
A (K ) ⊇ · · · ⊇ RA(K )

and ∞⋂
k=1

Υk
A(K ) = RA(K ).
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Semidefinite relaxations

Let Γ k
A(K ) =

{
z ∈ RNn

2k : L(k)
h (z ) = 0,L(k)

gj (z ) � 0, j = 0, 1, · · · ,n
}
.

(P) :
η = min

z
〈F , z 〉

s.t. z |A = a, z ∈ Rd(K ).

The k -th order semidefinite relaxation of (P) is

(SDR)k :
ηk = min

z
〈F , z 〉

s.t. z |A = a, z ∈ Γ k
A(K ).

Suppose z ∗,k is a minimizer of (SDR)k .
• ηk ≤ η for all k .
• If a = z ∗,k |A ∈ RA(K ), then ηk = η, z ∗,k is minimizer of (P),
i.e., the relaxation (SDR)k is exact for solving (P).
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A certificate for a admitting no measure

Let a ∈ RA, K = {x : h(x ) = 0, (g0(x ), . . . , gn−1(x )) ≥ 0},

Fact: Since F(P) ⊆ F((SDR)k ), a admits no K -measure if the
semidefinite relaxation

L(k)
h (z ) = 0,L(k)

gj (z ) � 0, j = 0, 1, . . . ,n − 1

z |A = a, z ∈ RNn
2k

is infeasible for any k ≥ deg(A)/2.

Remark. Suppose K is compact and R[x ]A is K -full. If a admits no
K -measure, then for some k the above semidefinite relaxation is
infeasible.

Nie, 2002
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A semidefinite algorithm for checking MP

Step 0 Choose F ∈ Σn ,d , let k := 2.
Step 1 Solve the k -th relaxation problem (SDR)k .

If it is infeasible, a doesn’t admit a K -measure.
Otherwise, compute a minimizer z ∗,k . Let t := 1.

Step 2 Let w := z ∗,k |2t .
If the rank condition is not satisfied, go to Step 4.

Step 3 Compute the finitely atomic measure µ admitted by w :

µ = ρ1δ(u1) + · · ·+ ρmδ(um),

where ρi > 0, ui ∈ K , m = rankMt (w), δ(ui ) is the
Dirac measure supported on the point ui . Stop.

Step 4 If t < k , set t := t + 1, go to Step 2;
otherwise, set k := k + 1, go to Step 1.
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Properties of the algorithm

The algorithm has the following properties:
• If (SDR)k is infeasible for some k , A /∈MPn .
• If A /∈MPn , the (SDR)k is infeasible for all k big enough.
• If A ∈MPn , for almost all generated F , we can asymptotically
get an MP-decomposition of A, by solving the hierarchy of
(SDR)k for k = 2, 3, . . ..

Remark (finite convergence).
• If A ∈MPn , under some general conditions, which is almost
necessary and sufficient, an MP-decomposition of A can often be
obtained within finitely many steps.

• This always happens in numerical experiments.
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Numerical experiments

• Choose F = [x ]Td/2H
TH [x ]d/2, where [x ]d/2 := (xα)α∈Nn

d/2
,

H is a random square matrix obeying Gaussian distribution.

• (SDR)k is solved by GloptiPoly 3 and SeDuMi.

• The rank condition is checked numerically with SVD.

The rank of a matrix is evaluated as the number of its singular
values that are greater than or equal to 10−6.

• Henrion & Lasserre’s method is used to compute an m-atomic
K -measure for w .
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Example 1. Consider A given as

A =



8 6 6 2 2 0 0
6 5 4 1 0 −1 −2
6 4 5 2 3 1 2
2 1 2 1 2 1 2
2 0 3 2 5 3 6
0 −1 1 1 3 2 4
0 −2 2 2 6 4 8


.

• A has rank 2.
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• A can be decomposed as

A = u1uT
1 + u2uT

2 =



2
1
2
1
2
1
2





2
1
2
1
2
1
2



T

+



−2
−2
−1
0
1
1
2





−2
−2
−1
0
1
1
2



T

,

where u1 /∈MRn , u2 ∈MRn .
• The algorithm terminates at Step 1 with k = 2,
i.e. (SDR)k is infeasible.

So, A /∈MPn .
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Example 2. Consider A given as

A =



2 1 0 0 0 0 1
1 2 1 0 0 0 0
0 1 2 1 0 0 0
0 0 1 2 1 0 0
0 0 0 1 2 1 0
0 0 0 0 1 2 1
1 0 0 0 0 1 2


.

• A is symmetric diagonally dominant, A ∈ S+n .
• The algorithm terminates at Step 1 with k = 2,
i.e. (SDR)k is infeasible.
So, A /∈MPn .
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Example 3. Consider A given as

A =


6 3 0 −3 −6
3 2 1 0 −1
0 1 2 3 4
−3 0 3 6 9
−6 −1 4 9 14

 .

Since

A =


1
1
1
1
1




1
1
1
1
1



T

+


−1
0
1
2
3




−1
0
1
2
3



T

+


−2
−1
0
1
2




−2
−1
0
1
2



T

,

A ∈MPn .
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• The algorithm terminates at Step 3 with k = 3.

• It gives an MP-decomposition A =
2∑

i=1
ρiuiuT

i with

ρ1 = 7.5000, u1 = (−0.4472,−0.4472,−0.4472,−0.4472,−0.4472)T ,

ρ2 = 22.5000, u2 = (−0.4472,−0.1491, 0.1491, 0.4472, 0.7454)T .

• The length of the MP-decomposition is shorter,
which shows an advantage of the algorithm.
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Example 4. Consider A given as

A =



290 221 195 102 −100 −188 −289
221 170 152 76 −86 −150 −222
195 152 139 64 −91 −143 −198
102 76 64 40 −20 −52 −100
−100 −86 −91 −20 108 118 110
−188 −150 −143 −52 118 172 194
−289 −222 −198 −100 110 194 290


.

Since A has the decomposition

A =


−9
−6
−4
−4
−3
3
8




−9
−6
−4
−4
−3
3
8


T

+


−9
−7
−7
−2
7
9
9




−9
−7
−7
−2
7
9
9


T

+


−8
−7
−7
−2
7
9
9




−8
−7
−7
−2
7
9
9


T

+


−8
−6
−5
−4
1
1
8




−8
−6
−5
−4
1
1
8


T

,

A ∈MPn .
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• The algorithm terminates at Step 3 with k = 3.

• It gives an MP-decomposition A =
4∑

i=1
ρiuiuT

i with

ρ1 = 127.9059, u1 = (−0.5860,−0.3835,−0.2417,−0.2417,−0.2417, 0.2732, 0.5096)T ,

ρ2 = 226.0146, u2 = (−0.5817,−0.4083,−0.3053,−0.3053,−0.0864, 0.0120, 0.5485)T ,

ρ3 = 478.9378, u3 = (−0.4361,−0.3729,−0.3655,−0.1258, 0.3350, 0.4208, 0.4818)T ,

ρ4 = 376.1435, u4 = (−0.4569,−0.3532,−0.3516,−0.1017, 0.3463, 0.4542, 0.4542)T .

36 / 38



Conclusions

• We introduce the MP matrices.
• We formulate the problem of checking MP as a linear
optimization with moments.

• A semidefinite algorithm is proposed for checking whether a
given symmetric matrix A is MP or not.

• If A /∈MPn , we can give a certificate.

• If A ∈MPn , we can give an MP-decomposition for it.
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Thank you very much!
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