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What are monotonically positive matrices?

A real symmetric n x n matrix A is called monotonically positive
(MP) if there exist monotonically nondecreasing vectors
Up, -+ Uy € R™ such that

T T
A=uu; +- -+ uUpuy,.

e m is called the length of the decomposition.
e The smallest m is called the MP-rank of A.
e The decomposition is called an MP-decomposition of A.
Denote
MR ={z eR":z <--- < z,}.

e Ais MP &= A = UUT with U; € MR".
e AisMP — A€ S, .
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Properties of the MP cone

Denote the MP cone

MPy, = {Z wiul u; € M]R"} .
i

e |t is a proper cone,

i.e. closed, convex, pointed and full-dimensional.

The dual cone of the MP cone is

MP: ={BeS,:uTBu>0for all u € MR"}.

e It is also a proper cone.
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Applications in order statistics

e Suppose (Xi,...,X,) are n jointly distributed random variables.
The corresponding order statistics are the Xs arranged

Xl:n S X2:n S T S Xn:n—

e Suppose z € R™ is random with Ez = b and the covariance
matrix C, where

Cij:E[(:Ei—bi)(:L‘j—bj)], i,j:].,...,n.
Let A € R™™™ with

Ay =E(zzj) = Gy + bibj, 4,5 =1,...,n.

Arnold-Balakrishnan-Nagaraja 1992
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A basic problem in order statistics

Let z € R™ be random, Ez = b, Ay = E(z;z;).
Problem:
e Study the probability function of z that is supported in MIR",

e Whether there exists a finite atomic Borel measure p supported
in MIR™ such that

m

T T

A:J zT du:Zuiui,
MR"™ i=1

where u; € MIR™ are support points.
e Whether A € MP,7?
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Examples

Example 1. Consider A given as

1 2 1
A= 2 4 2
1 2 1
Obviously, A is of rank 1 and
1 1\ 7
A=wT=| 2
1 1

Since u ¢ MR", A ¢ MP,.
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Example 2. Consider A given as

5 3 1 -5

3 2 1 -3

1 1 1 -1
-5 -3 -1 b

A=

Since A can be decomposed as

2 | 1\ T
1 1 1 1

A:ululT—I—ugugT = 0 0 + 1 1 )
2 2 1 1

where uy, up € MR", A € MP,,.
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Questions about MP

Given A € S,,, how to check whether A € MP,, or A ¢ MP,?

o If A¢ MP,, can we get a certificate for this?
o If Ae MP,, how can we get an MP-decomposition for it?
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Identifying vector

A symmetric matrix A € S, can be identified by a vector consisting of
its upper triangular entries:

vech(A) = (A11y...y Ainy Adgy.ory Aony Aszyeony Apn) T

o Let £:={(4,7):1<17<7<n} Then, A can also be identified

as a vector
aecRE,
where RZ denotes the space of vectors indexed by (4,7) in E.
1 2 1
o For example, A= 2 4 2 [,
1 2 1
,(1,3),(2,2),(2,3),(3,3)}
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A-truncated moment sequence
Let N be the set of nonnegative integers.

For o« = (o1, -+, tn) € N®, denote |of| := ox; + - - - + &y Let

A={ae N":|xl =2}
e There is a one-to-one correspondence between E and A:

(2,7) & e +ej.

For example, when n = 3,
(1,1) & (2,0,00T, (1,2) & (1,1,0)T.

e A€ S, can also be identified as

a:(a“)aeAE]RA, ay=A;ifa=¢e+e (2<7).

e R4 denotes the space of vectors indexed by « € A.
e ais called an A-truncated moment sequence (A-tms).
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Equivalent condition of MP

Recall that

Ace MPe=A=uul +- +upul, u; € MR™.

Let
K={zeR": 2Tz —-1=0,01 <2y <--- <z,

e K is nonempty and compact.
e Every monotonic vector is a multiple of a vector in K.

e Aec MP, <=1 p; >0,u; € K such that

A=pruul + -+ pmUmut
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A-truncated K-moment problem

Let
A={ae N": |« =2},
K={zeR":zTe—1=02 <2 <--- < 2}

The A-truncated K-moment problem (A-TKMP) is to decide
whether a € R* admits a measure p on K such that

a(x:J z%du, Vae A,
K

[0 Qry— X1 X,
where z% 1=zt - - zi".

e u satisfying the above is called a K-representing measure for a.
e w is called finitely atomic if its support is a finite set.
e 1 is called m-atomic if its support has at most m distinct points.

Lasserre 2001; Nie 2003
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Characterization via A-TKMP
let A={xeN":|a| =2}, K ={z eR": 2Tz =1,2; < --- < z,,}.

Since

a € R4 admits a K-measure & a, = J z%du, Vo € A,
K

Then,
AEMP, & A=pruul + - + pmUmuk.
<= a admits an m-atomic K-measure, i.e.,
a=pilua+-+ pmlunla,

where p; >0, u; € K, and [u;] 4 := (4)xca.
Denote
RA(K)={a:a admits a K-measure}.

Then, R4(K) is the MP cone.
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K-fullness and A-Riesz function

let A={aeN": || =2}, K ={z cR*": 2Tz =1,z < --- < z,}.
Denote

Rlz] 4 := span{z® : & € A} = span{z?, 7125, - - - , 22}
e R[z] 4 is called K-full if 3p € R[z] 4 such that p|x > 0.

o Choose p =Y I z2 € Rlz]4
p(z) >0,Vz e K = R[:r:]A is K-full.

For a € RA, define an A-Riesz function £, acting on R[z] 4 as

)= Z DPaly, forall p= Z Doz

€A axeA

Denote (p,a) := L,(p) for convenience.

15 / 38



Localizing matrices and moment matrices

Let
Ti={aeN": |a <d}, Rlz]g:=span{z*: « e N7}

For s € RN2x and q € R[z]s, the k-th localizing matrix of ¢
generated by s is the symmetric matrix Lglk)(s) satisfying

L(gp?) = vec(p) (LY (s)) vec(p), VD € RlZ]k_ rdeg(q)/2]s

e vec(p) is the coefficient vector of p in the graded lexicographical

ordering,
e [t] is the smallest integer that is not smaller than ¢.

e When ¢ =1, L(lk](s) is called a k-th order moment matrix and

denoted as My (s).

Fialkow-Nie 2012; Helton-Nie 2012; Nie 2013
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Localizing matrices and moment matrices
We have

(k)
LY (s) = (Z Qo Soct B4y ) BYENE g 1)
04

Mi(s) = L (s) = (spy)pyeny-
Denote
h(z):=zTz—1,
9(z) :=(go(z), g1(2), ..., gn-1(z)),

where go(l’) =1, 91((13) =T2— T1y..ny gn—l(x) =Tn — ITn—1-
Then, K can be described equivalently as

K={zeR": h(z)=0,g(z) > 0}.
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Example. If n =2 and k = 2, the k-th localizing matrix of A
generated by s is

@) 8(2,075(0,2)75(0,0)  5(3,075(1,2)75(1,0)  S(2,1)1T5(0,3)5
Lizgz1(s) = | $(3,018(1,2)7501,0)  S(4,075(2,2)75(2,0)  S(3,1)F5(1,3)~5
S(2,118(0,3)75(0,1)  $(3,1)T5(1,3)7S(1,1)  S(2,2)1S(0,4)—S

The k-th localizing matrices of g = (go, g1) generated by s are:

80,00 S(1,0) S(0,1) S(2,0) S(1,1) 5(0,2)
S(1,00  S(2,0) S(1,1) 53,00 S(2,1) 35(1,2)
ng)(s) — My(s) = S(o,1)  S(1,1)  S(0,2) S(2,1)  S(1,2)  5(0,3)
S(2,00 S(3,00 S(2,1) S(4,0) 5(3,1) 5(2,2)
S(1,1) S(2,1)  S(1,2) 8(3,1) S(2,2) $5(1,3)
S(0,2) S(1,2) S(0,3) S(2,2) S5(1,3) 5(0,4)

@) $(0,1) —5(1,0)  S5(1,1)—5(2,0)  5(0,2) 7 S(1,1)
Ly (s) = s1,1=S@20 S2,1)—S30 S1,2)—S21)
S(0,2) —5(1,1)  5(1,2)75(2,1)  5(0,3) 7 5(1,2)

(0,1)
(1,1)
(0,2)
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Flatness in TKMP

Let K ={z € R": h(z) =0,g9(z) > 0}.
Let s € RN2:. A necessary condition for s to admits K-measure is
L¥(s)=0, Ly'(s)=0, j=0,1,...,n—1,

If, in addition, rank M}y _1(s) = rankMg(s), we say s is flat.
Curto-Fialkow (2005) showed

s is flat = s admits a unique K-measure p

s = piluilor + ... + pmlumlor,

where p; >0, u; € K, m = rank M(s), [wlax := (uf)aeny, -
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Flat extensions and truncations
let A={axeN": || =2}, K ={z cR*: 2Tz =12, < --- < z,}.

For z € RNzx, denote 2|4 = (2a)acA.
o If a = z|4, call z is an extension of a, or a is a truncation of z.
o Ifa=2z|4 and z is flat, call z is a flat extension of a.

e Ifa=2z|4 and a is flat, call a is a flat truncation of z.

Fact: If a € RA has a flat extension, then a admits a K -measure:

a:zIA,zisﬂat:>z:J

[elopdp — a = J () adp.
K

K
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Flat extensions and measures

The following statements are equivalent:

A c MP, & a admits a K-measure
&= a admits a m-atomic K-measure, with m < |A|

<= a has a flat extension.

To check MP, it is enough to find a flat extension.
Questions: How to decide if a has a flat extension?
o If yes, how to find it?

e If no, how can we get a certificate?

Nie 2012.
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Linear optimization with moments

Let d > 2 be an even integer. Choose F'(z) € R[z]4,

F(z)= ) Faz™

NG
Consider the linear optimization problem with moments:

n=min (F,z)
(P): z
st. zly=a,z € Ry(K),

where

Ra(K) ={z € RNa: z admits a K-measures}.
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Choices of F'(z)

Note that

(P): n:nlzin (F,z)
s.t. zlA:a,z ERd(K),

e Since K is compact, Rlz] 4 is K-full,
— F(P) is compact convex,
— (P) has a minimizer for all F'.

e Choose F' € L, 4, the set of all sum of squares polynomials
in n variables with degree d.
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Semidefinite relaxations
Recall z € RNz is flat, if
LP(z)=0, LP(z)=0, j=0,1,...,n—1,
rank My _1(2z) = rankMg(z).
Denote
)={eeR%: L) =0, 1P (2) x 0,5 = 0,1, ,n},
= {zIA z € FA )}
If £ < deg(A)/2, Tﬁl( ) is defined to be RA, by default. Then,
YAK) 2 2YRE) 2 Y (K) 2 2 RA(K)

and

N TE(K) = Ra(K).

k=1
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Semidefinite relaxations

Let Fﬁ(K) = {z e RN2 : Lglk)(z) =0, L(gf)(z) =0,7=0,1,--- ,n}.

=min (F,z
Py T (Fyz)
st. zlga=a,z € R4(K).
The k-th order semidefinite relaxation of (P) is
=min (F,z
(SDR), : Nk 1 (F,z) .
st. zlgu=a,zelG(K).

*,k

Suppose 2% is a minimizer of (SDR)y.

e 1k <1 for all k.
o Ifa=2%F4 € RAo(K), then nF =n, 2°* is minimizer of (P),
i.e., the relaxation (SDR)y is exact for solving (P).
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A certificate for a admitting no measure

Let a € R4, K ={z: h(z) =0,(go(z),...,9n1(z)) >0},
Fact: Since F(P) C F((SDR)), a admits no K-measure if the
semidefinite relaxation
LP(2)=0,L{(2) = 0,5 =0,1,...,n— 1
zla=a,zc RV
is infeasible for any k > deg(.A)/2.

Remark. Suppose K is compact and R[z] 4 is K-full. If a admits no
K-measure, then for some k the above semidefinite relaxation is
infeasible.

Nie, 2002
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A semidefinite algorithm for checking MP

Step 0 Choose F' € L, 4, let k := 2.
Step 1 Solve the k-th relaxation problem (SDR)y.
If it is infeasible, a doesn't admit a K-measure.
Otherwise, compute a minimizer 2%k Let t:=1.
Step 2 Let w := 2%F|y.
If the rank condition is not satisfied, go to Step 4.
Step 3 Compute the finitely atomic measure p admitted by w:

nw= plé(ul) ++ pmé(um))

where p; >0, u; € K, m = rankM;(w), 6(u;) is the

Dirac measure supported on the point ;. Stop.
Step4 Ift < k,sett:=t+1, go to Step 2;

otherwise, set k := k + 1, go to Step 1.
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Properties of the algorithm

The algorithm has the following properties:
e If (SDR)y is infeasible for some k, A & MP,,.
o If A¢ MP,, the (SDR)y is infeasible for all k big enough.
o If A e MP,, for almost all generated F', we can asymptotically
get an MP-decomposition of A, by solving the hierarchy of
(SDR) for k =2,3,....

Remark (finite convergence).

o If A€ MP,, under some general conditions, which is almost
necessary and sufficient, an MP-decomposition of A can often be
obtained within finitely many steps.

e This always happens in numerical experiments.
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Numerical experiments

Choose F' = [m]g/gHTH[m}d/g, where [z] /5 = (:z:"‘)“eNZ/z,

H is a random square matrix obeying Gaussian distribution.
(SDR)y is solved by GloptiPoly 3 and SeDuMii.
The rank condition is checked numerically with SVD.

The rank of a matrix is evaluated as the number of its singular
values that are greater than or equal to 1076.

Henrion & Lasserre's method is used to compute an m-atomic
K-measure for w.
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Example 1. Consider A given as

5 41 0 -1 -2

6

2
4

-1 1 1 3
-2 2 2 6

0
0

e A has rank 2.
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e A can be decomposed as

A= ululT + uzuzT =

N P N = DN =N
N R N R N~ DN
+

where u; € MR", uy, € MR".

e The algorithm terminates at Step 1 with k = 2,
i.e. (SDR)y is infeasible.

So, A ¢ MPy,.
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Example 2. Consider A given as

_ O O O O

O O OO N -

OO OO~ N+~ O

O O = N = O O

O, N~ OO O

R NP, OO O O

N, O O O O

e A is symmetric diagonally dominant, A € S;}.

e The algorithm terminates at Step 1 with k = 2,

i.e. (SDR)y is infeasible.

So, A & MPy,.
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Example 3. Consider A given as

Since

S
Il
e

Ae MP,.

Y

w
O = N W

w NN = O

AW N RO

w N = O

N~ O

33 / 38



e The algorithm terminates at Step 3 with k = 3.

2
e It gives an MP-decomposition A = _ piuiuiT with
i=1

p1 = 7.5000, w; = (—0.4472, —0.4472, —0.4472, —0.4472, —0.4472) 7
ps = 22.5000, u, = (—0.4472,—0.1491,0.1491, 0.4472,0.7454) 7.

e The length of the MP-decomposition is shorter,

which shows an advantage of the algorithm.
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Example 4. Consider A given as

195
152
139
64
—91

—143
—198

Since A has the decomposition

-9
—6
—4
A= —4
—3

-3

290 221
221 170
195 152
102 76
—100 —86
—188 —150
L —289 —222
—9 77 -9
-6 -7
—4 -7
—4 + | -2

—9
=7
-7
—2

102
76
64
40

—20

—52

—100

T

—100
—86
—91
—20

108
118
110

—188

—150

—143
—52
118
172
194

—289
—222
—198
—100
110
194
290

—8
—6
—5
—4
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e The algorithm terminates at Step 3 with k = 3.

4
e It gives an MP-decomposition A = _ piuiuiT with

1=1
p1 = 127.9059, u; = (—0.5860, —0.3835, —0.2417, —0.2417, —0.2417, 0.2732, 0.5096) T,
py = 226.0146, ug = (—0.5817, —0.4083, —0.3053, —0.3053, —0.0864, 0.0120, 0.5485) T
p3 = 478.9378, uz = (—0.4361, —0.3729, —0.3655, —0.1258, 0.3350, 0.4208, 0.4818) T,
pa = 376.1435, ug = (—0.4569, —0.3532, —0.3516, —0.1017, 0.3463, 0.4542, 0.4542) 7.
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Conclusions

e We introduce the MP matrices.

o We formulate the problem of checking MP as a linear
optimization with moments.

o A semidefinite algorithm is proposed for checking whether a
given symmetric matrix A is MP or not.

o If A¢ MP,, we can give a certificate.

o If Ae MP,, we can give an MP-decomposition for it.
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Thank you very much!
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