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The Basic Model

I Consider a non-Lipschitz and nonconvex problem:

Minimize h(x) =
1

2
xTQx + aT x + c + λ

∑
i

xpi

Subject to x ≥ 0

(1)

I Q ∈ Rn×n, 0 � Q ≺ βI , 0 < p < 1.

I A generalization of the L2 − Lp minimization problem:

Minimize
1

2
‖Ax − b‖2 + λ

∑
i

xpi

Subject to x ≥ 0

(2)
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Main Theorem

Theorem
For any ε ∈ (0, 1), the algorithm obtains an ε− KKT point of (1)

in no more than O((n + h(x0)
M ) log 1

ε ) steps.
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Applications

I Signal Processing, Image Recontruction

I Influence Maximization in Social Network

I Customer Behavior Study: Products Assortment

I Financial Engineering

I Flexible Supply Chain

I Military; Game Theory...

Dongdong Ge An improved Algorithm for the L2 − Lp Minimization



Lp Minimization

I Consider the problem:

Minimize p(x) =
∑

1≤j≤n
xpj

Subject to Ax = b,
x ≥ 0,

(3)

I NP-hard when p = 0

I Strongly NP-Hard when 0 < p < 1 [5]

I ∃ an FPTAS in O(nε log 1
ε ) iterations to approach ε-stationary

point [5]
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L2 − Lp Minimization Model

I minx f (x) = ‖Ax − b‖22 + λ‖x‖pp,
I Lasso Regression when p = 1.

I Bridge Regression when 0 < p < 1; Strong NP-Hard [4]

Theorem
[3] (Chen et al. 2009) Let β be a positive constant such that for a

local minimizer x∗ : ‖AT (Ax∗ − b)‖ < β, and let L = (λp2β )
1

1−p .
Then, the local minimizer x∗ possesses the property

x∗j ∈ (−L, L)⇒ x∗j = 0, j ∈ N .
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The Hardness Results

I the Lq-Lp minimization problem:

Minimizex fq,p(x) := ‖Ax − b‖qq + λ‖x‖pp (4)

is strongly NP-hard for any given 0 ≤ p < 1, q ≥ 1 and λ > 0.

I

Minimizex fq,p,ε(x) := ‖Ax − b‖qq + λ
∑n

i=1(|xi |+ ε)p

(5)
is strongly NP-hard for any given 0 < p < 1, q ≥ 1, λ > 0
and ε > 0.
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Previous Work

I Bian et al. [1]: non-Lipschitz and non-convex minimization
with box constraints by affine scaling.

I The first order approximation: obtain an ε-KKT point in
O(ε−2) steps.

I The second order approximation: O(ε−
3
2 ); a higher

computational complexity at each iteration.

I Bian et al. [2] present an smoothing quadratic regularization
algorithm for solving a class of unconstrained non-smooth
non-convex problems.

I They show that their method takes at most O(ε−2) steps to
find an ε-KKT solution.
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ε-KKT Condition

Minimize h(x) =
1

2
xTQx + aT x + c + λ

∑
i

xpi

Subject to x ≥ 0

Definition
For a given ε ∈ (0, 1), we call x∗ ∈ Fp an ε− KKT point of (1), if
there is y∗ ≥ 0 , such that

x∗ ∈ Fp

‖[∇h(x∗)− y∗]i‖ ≤ ε, xi 6= 0

y∗ ≥ 0

(y∗)T x∗ ≤ ε

(6)
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Assumptions & Notations

I Assumption 1: The optimal value of problem (1) is lower
bounded by 0.

I Assumption 2: For any x0 ≥ 0, there exists γ such that
sup{‖x‖∞|h(x) ≤ h(x0)} ≤ γ.

I h(x) = f (x) + g(x)

I f (x) = 1
2βx

T x + aT x + c, g(x) = λ
∑

i x
p
i + 1

2x
T (Q − βI )x .

I dz = z̄ − z
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Potential Function

I

(MQP) : min Lz(x) = f (x) +∇g(z)(x − z)

x ≥ 0
(7)

I Let z̄ be the minimizer of (MQP), then the potential function
is

∆L(z) = Lz(z)− Lz(z̄) (8)

Lemma
For any z ≥ 0, if ∆L(z) ≤ ε2

2‖Q
1
2 ‖2

, then z is an ε− KKT point of

(1).
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A 3-Criteria Algorithm

Require: ε ∈ (0, 1), x0 ∈ Fp
Fix s > 0, τ > 0 and L > 0 (will specify later)
k = 0
while Not Stop do

Case 1:
if xki ≤ L for an index i , then

Update xk+1 by Removing xki from (1)
end if
Case 2:
if xk > L and (dk)T∇2h(xk)dk ≤ τ‖dk‖2 then

tk = max{t|xk + tdk ≥ 0, xk − tdk ≥ 0}
xk+1 = argminx∈{xk+tkdk ,xk−tkdk}h(x)

end if
end while
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A 3-Criteria Algorithm: Continued

while Not Stop do
Case 3:
if xk > L and (dk)T∇2h(xk)dk > τ‖dk‖2 then

xk+1 = xk + sdk

end if
if xk = 0 or ∆Lk ≤ ε2

2‖Q
1
2 ‖2

then

x∗ = xk ; Stop;
Stop

else
k = k + 1

end if
end while
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Complexity Analysis

Table: Summary of 3-Criteria Algorithm

Objective h(xk) Potential func. ∆Lk ‖xk‖0
C 1 nonincreasing ≤ h(x0) decreased by 1

C 2 h(xk)− h(xk+1) ≥ M ≤ h(x0) nonincreasing

C 3 nonincreasing Shrink at (1− sδ) nonincreasing

I Case 1: nearly zero component. The cardinality of the
solution is decreased. ≤ n times.

I Case 2: non-strongly convex. The decrement of objective

value: ≤ bh(x
0)

M c times.

I Case 3: strongly convex. The value of potential function,
≤ O(log 1

ε ) steps.
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The cardinality Decrement

Lemma
Case 1: For any k ≥ 0, if

0 < L < min{(n‖Qi‖γ + α
2 −

Qii
2 − ai )

1
p−1 , ∀i}, ‖xk‖∞ ≤ γ, and

there exists i such that xi is in (1) and xki ≤ L, then let{
xk+1
j = xkj , j 6= i

xk+1
j = 0, j = i ,

(9)

and we have h(xk)− h(xk+1) > 0.
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Non-Strongly Convex

Lemma
Case 2: For any k ≥ 0 and L > 0, if xk > L, and

I 0 < τ < 2p(1−p)(2−p)(3−p)Lp
4!nγ2

,

I (dk)T∇2h(xk)dk ≤ τ‖dk‖2, ‖xk‖∞ ≤ γ,

I let xk+1 = argminx∈{xk+tkdk≥0,xk−tkdk≥0}h(x),

I Then
h(xk)− h(xk+1) ≥ M > 0,

I where M = 1
4!p(1− p)(2− p)(3− p)Lp − 1

2τnγ
2.
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Case 3: Strongly Convex

Lemma
Case 3: For any k ≥ 0, τ > 0 and L > 0, if xk > L, and

I (dk)T∇2h(xk)dk > τ‖dk‖2

I ‖xk‖∞ ≤ γ,

I let xk+1 = xk + sdk
I we have

h(xk)− h(xk+1) ≥ 0,

∆Lk+1 ≤ (1− sδ)∆Lk ,

I where 0 < δ < min{2τβ , 1}, and

0 < s ≤ min{αu ( τβ −
δ
2),w , 1}(0 < w < 1,

u = β
2 + 1

α [[p(1− p)(L(1− w))p−2]2 + α2]
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Convergence Theorem

Theorem
For any ε ∈ (0, 1), the algorithm obtains an ε− KKT point of (1)

in no more than O((n + h(x0)
M ) log 1

ε ) steps.

Proof.

I During the process, the objective function and the cardinality
of the solution keep decreasing.

I The potential function value may come back in Case 1 and 2.

I But Case 1 and 2 only happen at most O((n + h(x0)
M )) times.

I Using Pigeonhole theorem, easy to prove O((n + h(x0)
M ) log 1

ε )
iterations.
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