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Convex conic matrix optimization

X = Rp×n or Sn (n × n symmetric matrices) endowed trace inner
product 〈·, ·〉 and Frobenius norm ‖ · ‖

(MOP) min
{
f(X) | A(X)− b ∈ Q, X ∈ X

}
f : X → (−∞,∞] is a proper closed convex function

Q is a closed convex cone in Rm

b ∈ Rm
A : X → Rm is a given (onto) linear map, e.g., A(X) = diag(X)

Define A∗ = the adjoint of A
Define the dual cone Q∗ = {X ∈ X | 〈Y, X〉 ≥ 0 ∀ Y ∈ Q}.
Define

(indicator function) δQ(X) =

{
0 if X ∈ Q
∞ otherwise
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Dual of MOP

Define

(conjugate function) f∗(Z) = sup
X∈X
{〈Z, X〉 − f(X)}

(subdifferential) ∂f(X) = conv{subgradients of f at X}

The dual problem of (MOP) is given by

max
y∈Q∗

〈b, y〉 − f∗(A∗y)

The KKT conditions for (MOP) are:

AX − b ∈ Q, y ∈ Q∗, A∗y ∈ ∂f(X)
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MOP covers many important classes of problems

Sn+ = cone of positive semidefinite matrices. Write X � 0 if X ∈ Sn+.

MOP includes linear semidefinite programming (SDP):

(SDP) min
{
〈C, X〉 | A(X) = b, X ∈ Sn+

}
= min

{
f(X) := 〈C, X〉+ δSn

+
(X) | A(X)− b ∈ Q := {0}m

}
δSn+(X) = indicator function of Sn+ =

{
0 if X ∈ Sn+
∞ otherwise

SDP is solvable by powerful interior-point methods if n and m are
not too large, say, n ≤ 2, 000, m ≤ 10, 000.

Current research interests focus on n ≤ 10, 000 but m� 10, 000.
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SDP and MOP have lots of Applications

SDP (and more generally MOP) is a powerful modelling tool! Appli-
cations are growing rapidly, and driving developments in algorithms
and software.

LMI in control
Combinatorial optimization
Robust optimization: project management, revenue manage-
ment
Polynomial optimization: option pricing, queueing systems
Moment problems, applied probability
Engineering: Signal processing, communication, structural opti-
mization, computer vision
Statistics/Finance: correlation/covariance matrix estimation
Machine learning: kernel estimation, dimensionality reduction/manifold
unfolding,
Euclidean metric embedding: sensor network localization, molec-
ular conformation
Quantum chemistry, quantum information
Many others ...
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Maximum stable set problem a graph G = (V, E)

A stable set S is subset of V such that no vertices in S are adjacent.
Maximum stable set problem: find S with maximum cardinality. Let

xi =

{
1 if i ∈ S
0 otherwise

⇒ |S| =
n∑
i=1

xi.

A common formulation of the max-stable-set problem:

α(G) := max
{
|S| = 1

|S|
∑

ij xixj | xixj = 0 ∀ (i, j) ∈ E , x ∈ {0, 1}n
}

⇓ X := xxT /|S|

max
{
〈E, X〉 | Xij = 0 ∀ (i, j) ∈ E , 〈I, X〉 = 1

}
SDP relaxation: X = xxT /|S| ⇒ X � 0, get

θ(G) := max
{
〈E, X〉 : Xij = 0 ∀ (i, j) ∈ E , 〈I, X〉 = 1, X � 0

}
θ+(G) := n(n+ 1)/2 additional constraints X ≥ 0
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Quadratic assignment problem (QAP)

Assign n facilities to n locations [Koopmans and Beckmann (1957)]

A = (aij) where aij= flow from facility i to facility j

B = (bkl) where bkl= distance from location k to location l

cost of assignment π =
∑n

i=1

∑n
j=1aijbπ(i)π(j)

min
P

{
〈B ⊗A, vec(P )vec(P )T 〉 | P is n× n permutation matrix

}
SDP+ relaxation [Povh and Rendl, 09]:
relax vec(P )vec(P )T to the n2 × n2 variable X ∈ Sn2

+ and X ≥ 0

(QAP) min
{
〈B ⊗A, X〉 | A(X)− b = 0, X ∈ Sn2

+ , X ≥ 0
}

where the linear constraints (with m = 3n(n + 1)/2) encode the
condition P TP = In, P ≥ 0.
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Relaxations of rank-1 tensor approximations

Consider symmetric 4-tensor [Nie, Lasserre, Lim, De Lathauwer et al]:

f(x) =
∑

1≤i,j,k,l≤n
Fijkl xixjxkxl → F ≈ λ(u⊗ u⊗ u⊗ u)

for some scalar λ and u ∈ Rn with ‖u‖ = 1.
Need to solve: maxx∈Rn{±f(x) | g(x) := x2

1 + · · ·+ x2
n = 1}. Let

[x]d = monomial vector of degree at most d

[x]d[x]Td =
∑
|α|≤2d

Aαx
α ⇒ Md(y) :=

∑
α

Aαyα

f(x) =
∑

fαx
α ⇒ 〈f, y〉

g(x) =
∑

gαx
α ⇒ 〈g, y〉

SDP relaxation is given by:

max{〈f, y〉 | 〈g, y〉 = 1, Md(y) � 0}

Relaxation is tight if rank(Md(y
∗))=1.
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Molecular conformation and sensor localization

Given sparse and noisy distance data {dij | (i, j) ∈ E} for n atoms,
find coordinates v1, . . . , vn in R3 such that ‖vi−vj‖ ≈ dij . Typically
E consists of 20–50% of all pairs of atoms which are ≤ 6Å apart.
Consider the model:

min
{∑

(ij)∈E |‖vi − vj‖
2 − d2

ij | | v1, . . . , vn ∈ R3
}

Let V = [v1, . . . , vn] and X = V TV. Relaxing X = V TV to X � 0
lead to an SDP:

min
X

{∑
(i,j)∈E |〈Aij , X〉 − d

2
ij | : 〈E, X〉 = 0, X � 0

}
where Aij = eie

T
i + eje

T
j − eieTj − ejeTi
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Protein molecule 1PTQ from Protein Data Bank:
number of atoms n = 402
number of pairwise distances given |E| ≈ 3700 (50% of distances
≤ 6Å ≈ 4.5% of all pairwise distances)

Actual Reconstructed

11



Nuclear norm minimization problem

Given a partially observed matrix of M ∈ Rn×n, find a min-rank
matrix Y ∈ Rn×n to complete M :

min
Y ∈Rn×n

{
rank(Y ) | Yij = Mij ∀ (i, j) ∈ E

}
(NP-hard)

[Candes, Parrilo, Recht, Tao,...] For a given rank-r matrix M ∈ Rn×n
that satisfies certain properties, if enough entries (∝ r n polylog(n))
are sampled randomly, then with very high probability, M can be
recovered from the following nuclear norm minimization problem:

min
Y ∈Rn×n

{
‖Y ‖∗ | Yij = Mij ∀ (i, j) ∈ E

} easier problem, but still
nontrivial to solve!

where ‖Y ‖∗ = sum of singular values of Y .
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Based on partially observed matrix, predict unobserved entries: will
customer i like movie j?

movies
2 1 4 5

4 1 3 5

5 4 1 3
3 5 2

4 5 3

2 1 4
1 5 5 4
2 5 4

3 3 1 5 2 1
3 1 2 3
4 5 1 3
3 3 5

2 1 1
5 2 4 4

1 3 1 5 4 5
1 2 4 5

?

? ?

?

? ?

?
?

?

?
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Sparse covariance selection problems

Given i.i.d. observations drawn from an n-dimensional Gaussian dis-
tribution N (x, µ,Σ), let Σ̂ be the sample covariance matrix.

Want to estimate Σ, whose inverse X := Σ−1 is sparse.
Dempster (1972) proved that xi and xj are conditionally inde-
pendent (given all other xk) if and only if Xij = 0.

Typically, we estimate X via the log-likelihood function:

max
{

log detX − 〈Σ̂, X〉 − 〈W, |X|〉 | X � 0
}

where the weighted L1-term is added to encourage sparsity in X.
Many papers: d’Aspremont, M. Yuan, Lu, Meinshausen, Bühlmann,
Wang-Sun-Toh, Yang-Sun-Toh
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Convex quadratic SDP

(MOP) also contains the important case of convex quadratic SDP:

(QSDP) min
X∈Sn

{1

2
〈X, Q(X)〉+ 〈C, X〉 | A(X)− b = 0, X ∈ Sn+

}
Q : Sn → Sn is a self-adjoint positive semidefinite linear operator.

A well-studied example is the nearest correlation matrix problem,
where given data matrix U ∈ Sn and weight matrix W � 0, we
want to solve the W -weighted NCM problem:

(W-NCM) min
X

{1

2
‖W (X − U)W‖2 | Diag(X) = 1, X � 0

}
.

1 The alternating projection method [Higham 02]
2 The quasi-Newton method [Malick 04]
3 An inexact semismooth Newton-CG method [Qi and Sun 06]
4 An inexact interior-point method [Toh, Tütüncü and Todd 07]
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H-weighted NCM problem

(H-NCM) min
X

{1

2
‖H ◦ (X − U)‖2 | Diag(X) = 1, X � 0

}
whereH ∈ Sn has nonnegative entries and “◦” denotes the Hardamard
product.

1 An inexact IPM for convex QSDP [Toh 08]
2 An ALM [Qi and Sun 10]
3 A semismooth Newton-CG ALM for convex quadratic program-

ming over symmetric cones [Zhao 09]
4 A modified alternating direction method for convex quadratically

constrained QSDPs [J. Sun and Zhang 10]
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Proximal-point algorithm (PPA)

Consider a proper closed convex function f . Given β > 0, the
Moreau-Yosida (MY) regularization of f is defined by

Fβ(X) := min
Y

f(Y ) +
1

2β
‖Y −X‖2

Denote the unique minimizer by Pβ(X) (known as the proximal map-
ping of f).
Fβ is continuously differentiable and convex:

∇Fβ(X) = 1
β (X − Pβ(X))

‖Pβ(X)− Pβ(Y )‖ ≤ ‖X − Y ‖ ∀X, Y

min f(X)⇔ minFβ(X)

PPA is a gradient method to solve minFβ(X):

Xk+1 ≈ Xk − βk∇Fβk(Xk) = Pβk(Xk)
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Key step: how to compute Pβ(Xk) efficiently for (MOP)

Given f such that Fβ(X),Pβ(X) can be computed analytically (or
easily) for any X. Consider the basic problem:

(MOP) min
{
f(X) | A(X)− b ∈ Q

}
.

The MY function at Xk is given by

FMOP
β (Xk) = min

{
f(X) +

1

2β
‖X −Xk‖2 | A(X)− b ∈ Q

}
(by strong duality)

=
1

2β
‖Xk‖2 + max

y∈Q∗

{
〈b, y〉 − 1

2β
‖Xk + βA∗y‖2 + Fβ(Xk + βA∗y)︸ ︷︷ ︸

Φk(y)

}

Optimality condition for max-subproblem is: y = ΠQ∗(y −∇Φk(y)),

∇Φk(y) = b−APβ(Xk + βA∗y)

18



Linear SDP: min
{
f(X) | A(X)− b ∈ Q

}
Here Q = {0}m, Q∗ = Rm, f(X) = 〈C, X〉+ δSn+(X).

Fβ(Y ) = min
{
〈C, X〉+

1

2β
‖X − Y ‖2 | X ∈ Sn+

}
=

1

2β
‖Y ‖2 − 1

2β
‖ΠSn+(Y − βC)‖2

Pβ(Y ) = ΠSn+(Y − βC) (Projection of matrix onto Sn+).

Hence the MY function at Xk is:

FMOP
β (Xk) =

1

2β
‖Xk‖2 + max

y∈Rm

{
Φk(y) := 〈b, y〉 − 1

2β
‖Pβ(Xk + βA∗y)‖2

}
Optimality condition of unconstrained max-subproblem is:

∇Φk(y) = b−APβ(Xk + βA∗y) = 0.

We solve it by a semismooth Newton-CG (SNCG) method.
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A semismooth Newton-CG method for max-subproblem

Solve ∇Φk(y) = b−AΠSn+(U) = 0, U = Xk + βA∗y − βC.

∇Φk(y) is not differentiable, but is strongly semismooth [Sun2, 2002].
At the current iteration, yl, we solve a generalized Newton equation:

H∆y ≈ ∇Φk(yl), where H∆y = βAΠ′Sn+(U)[A∗∆y] (1)

From eigenvalue decomp: U = QDQT with d1 ≥ · · · ≥ dr ≥ 0 >
dr+1 ≥ · · · ≥ dn, we choose

Π′Sn+(U)[M ] = Q[Ω ◦ (QTMQ)]QT , (2)

where Ωij = (d+
i − d+

j )/(di − dj). For γ = {1, . . . , r} and γ̄ =
{r + 1, . . . , n}, we have

Ω =

[
Eγγ Ωγγ̄

Ωγ̄γ 0

]
.

The structure in Ω allows for efficient computation of rhs of (2), and
hence matrix-vector multiply for CG in solving (1)
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Nuclear norm minimization: min
{
f(X) | A(X)− b ∈ Q

}
Here Q = {0}m, Q∗ = Rm, f(X) = ‖X‖∗.
Given any X, let its SVD be X = UDiag(σ)V T . Then

Fβ(X) = min
Y

{
‖Y ‖∗ +

1

2β
‖Y −X‖2

}
(computable via SVD of X)

Pβ(X) = UDiag(max{σ − β, 0})V T .

The MY function is:

FMOP
β (Xk) =

1

2β
‖Xk‖2 + max

y∈Q∗

{
〈b, y〉 − 1

2β
‖Pβ(Xk + βA∗y)‖2

}
Optimality condition for unconstrained max-subproblem is:

∇Φk(y) = b−APβ(Xk + βA∗y) = 0.

We solve it by a semismooth Newton-CG (SNCG) method.
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Convergence of PPA

For the max-subproblem, with appropriate stopping conditions includ-
ing the one below:

dist(0, ∂Φk(yk+1)) ≤ (εk/βk)‖Xk+1 −Xk‖, εk → 0,

then we get the following theorem based on [Rockafellar, 1976].

Theorem: Suppose primal and dual MOPs are strictly feasible, and
constraint nondegeneracy hold at the optimal solution X∗, y∗. Then
{Xk}, {yk} converge to X∗, y∗. Moreover, there exist constants
θ, θ′ such that for k large, we have

‖Xk+1 −X∗‖ ≤ θ√
θ2 + β2

max

‖Xk −X∗‖

‖yk+1 − y∗‖ ≤ θ′

βmax
‖Xk −X∗‖.

Larger βmax leads to faster LINEAR convergence, but inner problem
is harder to solve [we only need a decent fast linear rate, e.g., 0.95].
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Large scale SDP and SDP+: a brief history

Number of constraints m is large: m ≥ 10, 000 ⇒ m × m dense
“Hessian” matrix cannot be stored explicitly. For m = 105, needs
100GB RAM memory.

Parallel implementation of IPM [Benson, Borchers, Fujisawa, ...
03-present]
First-order gradient methods on NLP reformulation (low accu-
racy) [Burer-Monteiro 03]
Inexact IPM [Kojima, Toh 04]
Generalized Lagrangian method on shifted barrier-penalized dual
[Kocvara-Stingl 03]
ALM on primal SDP from relaxation of lift-and-project scheme
[Burer-Vandenbussche 06]
Boundary-point method: based on ALM on dual – ADMM with
unit step-length [Rendl et al. 06]
SDPNAL: SNCG ALM on dual [Zhao-Sun-Toh 10]
SDPAD: ADMM on dual with steplength 1.618 [Wen et al. 10]
2EDB: hybrid proximal extra-gradient method on primal [Mon-
teiro et al. 13]
SDPNAL+: SNCG PPA on primal for SDP+ [Yang-Sun-Toh 14]
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Doubly nonnegative programming: SDP+

Define N = {X ∈ Sn | X ≥ 0} (cone of nonnegative matrices)

(SDP+) min
{
〈C, X〉 | A(X) = b, X ∈ Sn+, X ∈ N

}
= min

{
〈C, X〉+ δN (X)

∣∣ [ A
I

]
X −

[
b
0

]
∈ Q := {0}m × Sn+

}
Here Q∗ = Rm × Sn+, f(X) = 〈C, X〉+ δN (X).

Fβ(Y ) =
1

2β
‖Y ‖2 − 1

2β
‖ΠN (Y − βC)‖2

Pβ(Y ) = ΠN (Y − βC) (Projection onto N )

Hence the MY function at Xk is:

FMOP
β (Xk) =

1

2β
‖Xk‖2

+ max
y∈Rm,S∈Sn+

{
〈b, y〉 − 1

2β
‖ΠN (Xk + β(A∗y + S − C))‖2

}
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A majorized SNCG method for subproblem: FMOP
β (Xk)

Let Ck = C − β−1Xk, and

Φk(y, S) = −〈b, y〉+
β

2
‖ΠN (A∗y + S − Ck)‖2

At a given (ŷ, Ŝ), we have the quadratic majorization:

Φk(y, S) ≤ Φk(ŷ, Ŝ)− 〈b, y〉+
β

2
‖A∗y + S − Ck + Ẑk‖2,

where Ẑk = ΠN (Ck −A∗ŷ − Ŝ).

Solve min{Φk(y, S) | y ∈ Rm, S ∈ Sn+} via majorized SNCG method:

Input (y0, S0) = (yk, Sk). For l = 0, 1, . . . ,

Compute Ẑkl = ΠN (Ck −A∗yl − Sl), solve

(yl+1, Sl+1) ≈ argminy∈Rm,S∈Sn
+

{
−〈b, y〉+ β

2 ‖A
∗y+S−Ck + Ẑkl ‖2

}
Output (yk+1, Sk+1)
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An ADMM+ method for dual of (MOP)

Cheaper than majorized SNCG if only low accuracy is required.
Dual of SDP+ and its augmented Lagrangian function are given by:

min{−〈b, y〉 | A∗y + S + Z = C, S ∈ Sn+, Z ∈ N}

Lσ(y, S, Z;X) = −〈b, y〉+ σ
2 ‖A

∗y + S + Z + σ−1X − C‖2 − 1
2σ‖X‖

2

Input (y0, S0;X0). For l = 0, 1, . . . , let Ĉl = C − σ−1Xl

(a) Zl+1 = argminZ∈N {Lσ(yl, Sl, Z;Xl)} = ΠN (Ĉl −A∗yl − Sl)

(b) ŷl+1 = argminy∈Rm{Lσ(y, Sl, Zl+1;Xl)}

(c) Sl+1 = argminS∈Sn
+
{Lσ(ŷl+1, S, Zl+1;Xl)} = ΠSn

+
(Ĉl−A∗ŷl+1−Zl+1)

(d) yl+1 = argminy∈Rm{Lσ(y, Sl+1, Zl+1;Xl)}

(e) Xl+1 = Xl + τσ(A∗yl+1 + Sl+1 + Zl+1 − C) (e.g., τ = 1.618).

ADMM+ is a convergent enhancement of the direct extension of
ADMM, whose convergence is not guaranteed.
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SDPNAL+: a practical implementation of 2-phase PPA for SDP+

1. Generate a good starting point to warm-start PPA-SNCG:
(y0, S0, Z0, X0, β0)← ADMM+(ȳ0, S̄0, Z̄0, X̄0, β̄0)

2. For k = 0, 1, . . .

Generate (yk+1, Sk+1, Zk+1, βk+1) by majorized SNCG

Compute Xk+1 based on (yk+1, Sk+1, Zk+1)

If progress of PPA-SNCG is slow,

Rescale data

Let (ȳk, S̄k, Z̄k, X̄k, β̄k) denote the rescaled (yk, Sk, Zk, Xk, βk)
Rescaling is chosen such that ‖X̄k‖ ≈ max{‖S̄k‖, ‖Z̄k‖}
Goto Step 1: Restart with ADMM+(ȳk, S̄k, Z̄k, X̄k, β̄k)
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Robustness of SDPNAL+

η := max

{
RP , RD, RSn+(X), RN (X), RSn+(S), RN (Z),

R(〈X, S〉), R(〈X, Z〉)

}
≤ 10−6.

We compare the performance of our SDPNAL+ and ADMM+ with
the direct ADMM (τ = 1.618) implemented in SDPAD [Wen et al.]
and 2EBD-HPE [Monteiro et al.]

Numbers of problems which are solved to the accuracy η ≤ 10−6

problem set (No.) SDPNAL+ ADMM+ SDPAD 2EBD

θ (58) 58 56 53 53

θ+ (58) 58 58 58 56

FAP ( 7) 7 7 7 7

QAP (95) 95 39 30 16

BIQ (134) 134 134 134 134

RCP (120) 120 120 114 109

R1TA (55) 55 42 47 18

Total (527) 527 456 443 393
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Performance profile on 527 large SDPs

Performance profiles of SDPNAL+, ADMM+, SDPAD and 2EBD
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Numerical results for SDPNAL+

Implemented the algorithms in Matlab.
Runs perform on a 6 cores Linux Server with 12 Intel Xeon processors
at 2.67 GHz and 32G RAM.

Stop SDPAD and 2EBD after 25000 iterations or 99 hours.

Prob m;n η time (hour:minute)
SDPAD|2EDB|SDPNAL+

1dc.2048 58368; 2048 9.9-7| 9.9-7| 9.9-7 14:00| 16:04| 5:50
fap36 4110+N ; 4110 9.9-7| 9.9-7| 9.5-7 78:43| 43:37| 23:07

nug30 1393+N ; 900 1.1-5| 1.7-5| 9.6-7 4:58| 5:39| 0:45
tai30a 1393+N ; 900 4.6-6| 1.3-5| 9.9-7 6:09| 6:00| 0:29

nonsym(6,5) 194480; 1296 9.9-7| 1.6-3| 5.2-7 2:59| 11:24| 0:05
nsym rd[40,40,40] 672399; 1600 3.7-4| 5.1-4| 8.6-7 13:56| 22:41| 0:14

nonsym(12,4) 12.32M; 9261 9.8-3| 5.2-3| 5.7-8 99:00| 99:00| 14:22

Results show that it is essential to use second-order information,
wisely, to solve hard and/or large problems!
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Summary

We have tested SDPNAL+ on about 520 SDPs from θ, θ+, QAP,
binary QP, rank-1 tensor approximation, etc

When the problems are primal-dual nondegenerate, SDPNAL+
can efficiently solve large SDPs to relative high accuracy. SDPAD
and 2EDB also performed well, though SDPNAL+ is often more
efficient.

Many of the tested SDPs are degenerate, but SDPNAL+ can
still solve them accurately with η < 10−6. Other hand, SDPAD
and 2EDB were not able to solve many such problems.

Many more challenging problems.

31



Thank you for your attention!
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