Exact Recovery for Sparse Signal
via Weighted ℓ_1 Minimization

SL Zhou YN Wang LC Kong NH Xiu

Department of Applied Mathematics, Beijing Jiaotong University

PKU Workshop On Optimization and Data Sciences, Dec 22, 2013, Peking University, Beijing
Outline

1 Introduction
2 Weighted Null Space Property
3 Restricted Isometry Property
4 Discussion
1 Introduction

1.1 Background

The concept of compressed sensing was first introduced by Donoho [D], Candès, Romberg and Tao [CRT] and Candès and Tao [CT]. Since then myriads of researchers have been lured to this area owing to its wide applications in signal processing, communications, astronomy, biology, medicine and so forth, see, e.g., [EK].

1 Introduction
1.2 Problem

The fundamental problem in compressed sensing is to recover a sparse solution $x \in \mathbb{R}^n$ of the underdetermined system of the form

$$\Phi x = y,$$

where $y \in \mathbb{R}^m$ is the available measurement and $\Phi \in \mathbb{R}^{m \times n}$ is a known measurement matrix.
1 Introduction

1.3 Model Representation

To recover a sparse solution $x \in \mathbb{R}^n$ of the form $\Phi x = y$, the underlying model is the following ℓ_0 minimization:

$$\min \|x\|_0, \quad \text{s.t. } \Phi x = y,$$

(1)

where $\|x\|_0$ is ℓ_0-norm of the vector $x \in \mathbb{R}^n$. However (1) is NP-Hard.
1 Introduction
1.3 Model Representation

One common approach is to solve (1) via convex ℓ_1 minimization:

$$\min \| x \|_1, \quad \text{s.t. } \Phi x = y.$$ \hspace{2cm} (2)

The use of ℓ_1 minimization has become so extensively that it could arguably be considered *the modern least squares*, see, e.g., [BDE],[CWX] and [CZ].

Inspired by the efficiency of ℓ_1 minimization, it is natural to ask, for example, whether a different (but perhaps again convex) alternative to ℓ_0 minimization might also find the correct solution, but with a lower measurement requirement than ℓ_1 minimization.

Numerical experiments indicate that the reweighted ℓ_1 minimization does outperform unweighted ℓ_1 minimization in many situations.

In this talk, as a sequence, we consider the theoretical properties of the \textit{weighted ℓ₁ minimization}:

$$\min \| w \odot x \|_1, \; \text{s.t.} \; \Phi x = b,$$

where \odot denotes the Hadamard product, that is $\| w \odot x \|_1 = \sum \omega_i |x_i|$, and $0 < \omega_i \leq 1$, $i = 1, 2, \ldots, n$.
1 Introduction

1.3 Model Representation

Some cases that ℓ_1 minimization will fail to recover the sparse signal while exact recovery can be succeeded via weighted ℓ_1 minimization. (a) Sparse signal $x^{(0)} = (0, 0, 2)^T$, feasible set $\Phi x = b$, and in ℓ_1 ball there exists an $x^{(1)} = (\frac{3}{4}, \frac{3}{4}, 0)^T$ but $\|x^{(1)}\|_0 > \|x^{(0)}\|_0$. (b) In weighted ℓ_1 ball, there does not exist an $x \neq x^{(0)}$ such that $\|x\|_0 \leq \|x^{(0)}\|_0$.
1 Introduction
1.4 Null Space Property

The null space property (NSP) is the necessary and sufficient condition for (2) to reconstruct the system \(b = \Phi x \) exactly, see, e.g., [Z].

Definition I.1 (NSP)

A matrix \(\Phi \in \mathbb{R}^{m \times n} \) satisfies the null space property of order \(k \) if for all subsets \(S \in \mathcal{C}_n^k \) it holds

\[
\| h_S \|_1 < \| h_{Sc} \|_1
\]

for any \(h \in \mathcal{N}(\Phi) \setminus \{0\} \), where \(\mathcal{N}(\Phi) = \{ h \in \mathbb{R}^n \mid \Phi h = 0 \} \) and \(\mathcal{C}_n^k = \{ S \subset \{1, 2, \cdots, n\} \mid |S| = k \} \).

Another most popular sufficient condition for exact sparse recovery is *Restricted Isometry Property* (RIP) introduced by Candès and Tao [CT].

Definition 1.2 (RIP)

For $k \in \{1, 2, \cdots, n\}$, the restricted isometry constant is the smallest positive number δ_k such that

$$(1 - \delta_k)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1 + \delta_k)\|x\|_2^2$$

hold for all k-sparse vector $x \in \mathbb{R}^n$, i.e., $\|x\|_0 \leq k$.

1 Introduction

1.7 Current Results for ℓ_1 Minimization

<table>
<thead>
<tr>
<th></th>
<th>δ_k</th>
<th>δ_{2k}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candès</td>
<td>- -</td>
<td>0.4142</td>
</tr>
<tr>
<td>Foucart and Lai</td>
<td>- -</td>
<td>0.4531</td>
</tr>
<tr>
<td>Foucart</td>
<td>- -</td>
<td>0.4652</td>
</tr>
<tr>
<td>Cai, Wang and Xu</td>
<td>- -</td>
<td>0.4721</td>
</tr>
<tr>
<td>Mo and Li</td>
<td>- -</td>
<td>0.4931</td>
</tr>
<tr>
<td>Cai and Zhang</td>
<td>1/3</td>
<td>0.5000</td>
</tr>
<tr>
<td>Zhou, Kong and Xiu</td>
<td>- -</td>
<td>0.5746</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with $\delta_{8k} < 1$</td>
</tr>
<tr>
<td>Andersson and Strömberg</td>
<td>- -</td>
<td>0.6246</td>
</tr>
</tbody>
</table>

Table: Different bounds on δ_k and δ_{2k}.

Recently, Cai and Zhang [CZ] got a sharp bound

$$\delta_{tk} < \sqrt{\frac{t - 1}{t}}.$$ \hspace{1cm} (6)

☆ Particularly, $\delta_{2k} < \frac{\sqrt{2}}{2}$. It is worth mentioning that (6) is the sharp bound for ℓ_1 minimization which has been proved in [CZ].

As for the weighted ℓ_1 minimization, literature [FMSY] presented us the upper bound on δ_k might be $\delta_k < 0.4343$ under some cases.

Definition II.1

A matrix $\Phi \in \mathbb{R}^{m \times n}$ satisfies the null space property of order k if for all subsets $S \in \mathcal{C}^k_n$ it holds

$$\|h_S\|_1 < \|h_{S^c}\|_1$$

(7)

for any $h \in \mathcal{N}_1 := \{h \in \mathbb{R}^n | h \in \mathcal{N}(\Phi), \|h\|_1 = 1\}$.

Lemma II.2

Definition I.1 is equivalent to Definition II.1.
2 Weighted Null Space Property
2.2 Property of the WNSP

Definition II.2 (WNSP)

For a given weight $\omega \in \mathbb{R}^n$, a matrix $\Phi \in \mathbb{R}^{m \times n}$ satisfies the weighted null space property of order k if for all subsets $S \in \mathcal{C}^k_n$ it holds

$$\| \omega \circ h_S \|_1 < \| \omega \circ h_{Sc} \|_1 \quad (8)$$

for any $h \in \mathcal{N}_1$.

Theorem II.2

Every k-sparse vector $\hat{x} \in \mathbb{R}^n$ is the unique solution of the weighted minimization (3) with $b = \Phi \hat{x}$ iff Φ satisfies the WNSP of order k.
2 Weighted Null Space Property

2.3 Two Examples

\[\Phi = \begin{pmatrix} 4/5 & 0 & 3/10 \\ 0 & 4/5 & 3/10 \end{pmatrix}, \quad b = \begin{pmatrix} 3/5 \\ 3/5 \end{pmatrix}. \]

Clearly, the unique solution of \(\ell_0 \) and \(\ell_1 \) models are
\[x^{(0)} = (0, 0, 2)^T \text{ and } x^{(1)} = (3/4, 3/4, 0)^T. \]

If setting \(\omega_2 = \omega_1, \omega_3 < \frac{3}{4} \omega_1 \), \(x^{(0)} \) is also the unique solution of the weighted \(\ell_1 \) model.

For any \(h \in \mathcal{N}_1 \), we have
\[h = \left(\frac{3}{8} h_3, \frac{3}{8} h_3, -h_3 \right)^T \text{ with } h_3 = 4/7. \]
Then for all subset \(S \in \mathcal{C}_3^1 \) and the given \(\omega \) it holds
\[\| \omega \circ h_S \|_1 < \| \omega \circ h_{Sc} \|_1, \] which means \(\Phi \) satisfies WNSP. It is worth mentioning that this \(\Phi \) does not satisfy the NSP due to
\[|h_3| \not\approx |\frac{3}{4} h_3| = |h_1| + |h_2|. \]
Some cases that ℓ_1 minimization will fail to recover the sparse signal while exact recovery can be succeeded via weighted ℓ_1 minimization. (a) Sparse signal $x^{(0)} = (0, 0, 2)^T$, feasible set $\Phi x = b$, and in ℓ_1 ball there exists an $x^{(1)} = \left(\frac{3}{4}, \frac{3}{4}, 0\right)^T$ but $\|x^{(1)}\|_0 > \|x^{(0)}\|_0$. (b) In weighted ℓ_1 ball, there does not exist an $x \neq x^{(0)}$ such that $\|x\|_0 \leq \|x^{(0)}\|_0$.
2 Weighted Null Space Property

2.3 Two Examples

\[\Phi = \begin{pmatrix} 3/4 & -1/2 & 3/8 & 1/2 & -1/4 \\ 3/4 & -1/2 & -1/8 & 1/2 & 0 \\ 0 & 1/4 & 3/8 & -1/8 & -3/8 \end{pmatrix}, \quad b = \begin{pmatrix} 1/2 \\ 1/2 \\ -1/8 \end{pmatrix}. \]

\[x^{(0)} = (0, 0, 0, 1, 0)^T, \quad x^{(1)} = \left(\frac{1}{3}, -\frac{1}{2}, 0, 0, 0 \right)^T, \]
\[\omega_2 = \frac{2}{3} \omega_1, \omega_4 = \frac{1}{2} \omega_1, \omega_3 = \omega_5 = \omega_1, \]
\[h = \left(\frac{-8h_2 + 13h_5}{12}, h_2, \frac{h_5}{2}, \frac{4h_2 - 3h_5}{2}, h_5 \right)^T. \]

Likely, \(\Phi \) satisfies the WNSP we defined while does not content the NSP.
3 Restricted Isometry Property

3.1 Design the Weight

We first design a way of weighing and introduce some notations. Let T_0 and \hat{h} be the optimal solution of the following model

\[
(T_0, \hat{h}) := \arg\max_{T \in C_n^k, h \in \mathbb{N}_1} \|h_T\|_1.
\]

(9)

For a constant $0 < \gamma \leq 1$, we define ω based on T_0 as

\[
\omega_i = \begin{cases}
\gamma, & i \in T_0, \\
1, & i \in T_0^c,
\end{cases}
\]

(10)

where T_0^c is the complementary set of T_0 in $\{1, 2, \cdots, n\}$.
Lemma III.1

Let T_0 and \hat{h} be defined as (9). If T_0 uniquely exists, then there exists ω defined as (10) with $0 < \gamma < 1$ such that

$$\|\omega \circ \hat{h}_{T_0}\|_1 = \max_{T \in \mathcal{C}_n^k, h \in \mathcal{N}_1} \|\omega \circ h_T\|_1.$$ \hspace{1cm} (11)

If T_0 exists but not uniquely, then ω defined as (10) with $\gamma = 1$ that satisfies (11).
Theorem III.2

For the given γ and ω as (9) and (10), if

$$\delta_{ak} < \sqrt{\frac{a - 1}{a - 1 + \gamma^2}}$$ \hspace{1cm} (12)

holds for some $a > 1$, then each k sparse minimizer \hat{x} of the weighted ℓ_1 minimization (3) is the solution of (1).
3 Restricted Isometry Property

3.3 Main Theorems

<table>
<thead>
<tr>
<th>γ</th>
<th>δ_{2k}</th>
<th>δ_{3k}</th>
<th>δ_{4k}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\sqrt{2}/2$</td>
<td>$\sqrt{6}/3$</td>
<td>$\sqrt{3}/2$</td>
</tr>
<tr>
<td>3/4</td>
<td>0.800</td>
<td>0.883</td>
<td>0.917</td>
</tr>
<tr>
<td>1/2</td>
<td>0.894</td>
<td>0.942</td>
<td>0.960</td>
</tr>
<tr>
<td>1/4</td>
<td>0.970</td>
<td>0.984</td>
<td>0.989</td>
</tr>
</tbody>
</table>

Table: Bounds on δ_{2k}, δ_{3k} and δ_{4k} with different cases.
Theorem III.3

For the given \(\gamma \) and \(\omega \) as (9) and (10), if

\[
\delta_k < \begin{cases}
\frac{1}{1 + 2\lceil \gamma k \rceil / k}, & \text{for even number } k \geq 2, \\
\frac{1}{1 + 2\lceil \gamma k \rceil / \sqrt{k^2 - 1}}, & \text{for odd number } k \geq 3,
\end{cases}
\]

holds, where \(\lceil a \rceil \) denotes the smallest integer that is no less than \(a \), then each \(k \) sparse minimizer \(\hat{x} \) of the weighted \(\ell_1 \) minimization (3) is the solution of (1).
3 Restricted Isometry Property

3.3 Main Theorems

Table: Bounds on δ_k with different cases. From the table one cannot difficultly find that under some mild situation, the upper bounds are greater than 0.4343.

<table>
<thead>
<tr>
<th>γ</th>
<th>$k \geq 2$ is even</th>
<th>$k \geq 3$ is odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/3</td>
<td>0.3203</td>
</tr>
<tr>
<td>3/4</td>
<td>3/8 ($k \geq 4$)</td>
<td>0.3797 ($k \geq 5$)</td>
</tr>
<tr>
<td>1/2</td>
<td>1/2 ($k \geq 2$)</td>
<td>$\sqrt{6} - 2$ ($k \geq 5$)</td>
</tr>
<tr>
<td>1/4</td>
<td>2/3 ($k \geq 4$)</td>
<td>$3 - \sqrt{6}$ ($k \geq 5$)</td>
</tr>
<tr>
<td>1/6</td>
<td>3/4 ($k \geq 6$)</td>
<td>0.7101 ($k \geq 5$)</td>
</tr>
</tbody>
</table>
3 Restricted Isometry Property
3.4 Two Examples

\[\Phi = \begin{pmatrix} 4/5 & 0 & 3/10 \\ 0 & 4/5 & 3/10 \end{pmatrix}, \quad b = \begin{pmatrix} 3/5 \\ 3/5 \end{pmatrix}. \]

From \(h = \begin{pmatrix} 3/8 h_3, 3/8 h_3, -h_3 \end{pmatrix}^T \in \mathcal{N}_1 \) with \(h_3 = 4/7 \), \(|h_3| \) is the largest entry of \(h \), i.e. \(T_0 = \{3\} \) uniquely exists. Therefore by setting \(3/8 < \omega_3 = \gamma < 0.418, \omega_1 = \omega_2 = 1 \), we have \(\gamma \| h_{\{3\}} \|_1 < \| h_{\{1,2\}} \|_1 \), which means that \(x^{(0)} \) is the unique solution of weighted \(\ell_1 \) model. We directly calculate that \(\delta_2 = 0.9224 \) with \(n = 3, k = 2 \) by the following formula

\[\delta_k = \max_{S \in \mathcal{C}_n^k} \| \Phi^T S \Phi S - I_k \|, \]

(15)

where \(\| \cdot \| \) denotes the spectral norm of a matrix. Since \(T_0 \) uniquely exists and \(\gamma < 0.418 \), it yields \(\delta_2 < 0.9226 \) from (12) by taking \(a = 2, k = 1 \). Hence the \(\ell_0 \) minimization can be exactly reconstructed by the weighted \(\ell_1 \) minimization from our Theorem III.2
3 Restricted Isometry Property

3.4 Two Examples

\[\Phi = \begin{pmatrix} 3/4 & -1/2 & 3/8 & 1/2 & -1/4 \\ 3/4 & -1/2 & -1/8 & 1/2 & 0 \\ 0 & 1/4 & 3/8 & -1/8 & -3/8 \end{pmatrix}, \quad b = \begin{pmatrix} 1/2 \\ 1/2 \\ -1/8 \end{pmatrix}. \]

From \(h = \left(\frac{-8h_2 + 13h_5}{12}, h_2, \frac{h_5}{2}, \frac{4h_2 - 3h_5}{2}, h_5 \right)^T \), it follows that

\[T_0 = \{4\}, \quad \hat{h} = (-2h_2/3, h_2, 0, 2h_2, 0)^T, \quad h_2 = 6/11, \]

which manifests that \(T_0 \) uniquely exists. By setting \(\omega_4 = \gamma = 0.3, \omega_1 = \omega_2 = \omega_3 = \omega_5 = 1 \), we have \(\gamma \|h_\{4\}\|_1 < \|h_\{1,2,3,5\}\|_1 \), which means that \(x^{(0)} \) is the unique solution of weighted \(\ell_1 \) minimization. We compute \(\delta_2 = 0.9572 \) by (15) with \(n = 5, k = 2 \). Since \(T_0 \) uniquely exists and \(\gamma = 0.3 \), it yields \(\delta_2 < 0.9578 \) from (12) by taking \(a = 2, k = 1 \). And thus the \(\ell_0 \) minimization can be exactly recovered via the weighted \(\ell_1 \) minimization from Theorem III.2.
Although T_0 defined by (9) always exists but not uniquely sometimes. However, from Examples above, we can see the assumption that T_0 uniquely exists is actually not a strong assumption to a certain extent.
The relationship between WNSP, NSP and RIP, the dashed area denotes the scale of matrices that satisfy the RIP via weighted ℓ_1 minimization.
Thank you!