Stochastic Approximation Methods for Nonconvex Stochastic Composite Optimization

Hongchao Zhang

Department of Mathematics Center for Computation and Technology Louisiana State University

Joint work with S. Ghadimi & G. Lan

December 22nd, 2013

Stochastic Composite Optimization

Optimize

$$\min_{\mathbf{x} \in \mathbf{X}} F(\mathbf{x}) := f(\mathbf{x}) + \phi(\mathbf{x}),$$

where

- ullet $f\in \mathcal{C}^{1,1}_L(\mathbf{X})$, but abla f is not available. $\mathbf{X}\in \mathbb{R}^n$ is a convex set.
- For any $\mathbf{x}_k \in \mathbf{X}$, a stochastic first-order oracle (\mathcal{SFO}) provides a stochastic gradient $G(\mathbf{x}_k, \xi_k)$, or a stochastic zero-order oracle (\mathcal{SZO}) provides a stochastic function value $F(\mathbf{x}_k, \xi_k)$, where ξ_k is a random variable supported on Ξ_k .
- ϕ is a simple convex function, but possibly nonsmooth. (Ex. $\phi = \|\cdot\|_1, \phi = \|\cdot\|_{TV}$ or $\phi \equiv 0$.)

Outline

- The Generalized Projection and its Properties
- The Stochastic First-order methods (Stochastic Projected Gradient Method)
- The Stochastic Zero-order methods (Stochastic Projected Gradient-free Method)
- Preliminary Numerical Results

The generalized projection

• The (generalized) projection:

$$\mathbf{x}^+(\mathbf{x},\mathbf{g},\gamma) = \mathrm{Arg} \min_{\mathbf{u} \in \mathbf{X}} \left\{ \langle \mathbf{g}, \mathbf{u} \rangle + \frac{1}{\gamma} V(\mathbf{u},\mathbf{x}) + \phi(\mathbf{u}) \right\},$$

where $\gamma >$ 0, V is the prox-function associated with $\omega \in \mathcal{S}_{\nu,L}^{1,1}$

$$V(\mathbf{u}, \mathbf{x}) := \omega(\mathbf{u}) - [\omega(\mathbf{x}) + \langle \nabla \omega(\mathbf{x}), \mathbf{u} - \mathbf{x} \rangle].$$

Ext.
$$\omega(\mathbf{x}) = \|\mathbf{x}\|^2/2$$
 with $\nu = 1$, then $V(\mathbf{u}, \mathbf{x}) = \|\mathbf{u} - \mathbf{x}\|^2/2$.

 Assumption: The (generalized) projection is relatively easily solvable.

Properties of the projection

- Definition: Let $P_{\mathbf{X}}(\mathbf{x}, \mathbf{g}, \gamma) = \frac{1}{\gamma}(\mathbf{x} \mathbf{x}^+)$.
- \bullet For any $\mathbf{x} \in \mathbf{X}$, $\mathbf{g} \in \mathbb{R}^n$ and $\gamma > 0$, we have

$$\langle \mathbf{g}, P_{\mathbf{X}}(\mathbf{x}, \mathbf{g}, \gamma) \rangle \ge \nu \|P_{\mathbf{X}}(\mathbf{x}, \mathbf{g}, \gamma)\|^2 + \frac{1}{\gamma} \left[h(\mathbf{x}^+) - h(\mathbf{x}) \right].$$

 \bullet If $\mathbf{x}_1^+=\mathbf{x}^+(\mathbf{x},\mathbf{g}_1,\gamma)$ and $\mathbf{x}_2^+=\mathbf{x}^+(\mathbf{x},\mathbf{g}_2,\gamma)$, then

$$\|\mathbf{x}_{2}^{+} - \mathbf{x}_{1}^{+}\| \leq \frac{\gamma}{\nu} \|\mathbf{g}_{2} - \mathbf{g}_{1}\|$$

and

$$\|P_{\mathbf{X}}(\mathbf{x},\mathbf{g}_1,\gamma) - P_{\mathbf{X}}(\mathbf{x},\mathbf{g}_2,\gamma)\| \leq \frac{1}{\nu} \|\mathbf{g}_1 - \mathbf{g}_2\|.$$

Properties of the projection

• For any $\mathbf{u} \in \mathbf{X}$, we have

$$egin{aligned} \langle \mathbf{g}, \mathbf{x}^+
angle + h(\mathbf{x}^+) + rac{1}{\gamma} V(\mathbf{x}^+, \mathbf{x}) \ & \leq & \langle \mathbf{g}, \mathbf{u}
angle + h(\mathbf{u}) + rac{1}{\gamma} [V(\mathbf{u}, \mathbf{x}) - V(\mathbf{u}, \mathbf{x}^+)]. \end{aligned}$$

The Stochastic First-order methods

Assumption:

• For any $k \ge 1$, we have

a)
$$\mathbb{E}[G(\mathbf{x}_k, \xi_k)] = \nabla f(\mathbf{x}_k)$$

b)
$$\mathbb{E}\left[\|G(\mathbf{x}_k, \xi_k) - \nabla f(\mathbf{x}_k)\|^2\right] \leq \sigma^2$$
,

for some $\sigma > 0$.

A randomized stochastic projected gradient algorithm

A general RSPG Algorithm

Input: Initial point $\mathbf{x}_1 \in \mathbf{X}$, iteration limit N, the stepsizes $\{\gamma_k > 0\}$, the batch sizes $\{m_k\}$, and the probability mass function P_R supported on $\{1,\ldots,N\}$.

Step 0. Let R be a random variable with density function P_R .

Step $k=1,\ldots,R-1$. Call the \mathcal{SFO} m_k times to obtain $G(\mathbf{x}_k,\xi_{k,i}),\ i=1,\ldots,m_k$, and set $G_k=(\sum_{i=1}^{m_k}G(\mathbf{x}_k,\xi_{k,i}))/m_k$, and compute

$$\mathbf{x}_{k+1} = \operatorname{Arg}\min_{\mathbf{u} \in \mathbf{X}} \left\{ \langle G_k, \mathbf{u} \rangle + \frac{1}{\gamma_k} V(\mathbf{u}, \mathbf{x}_k) + \phi(\mathbf{u}) \right\}.$$

Output: x_R .

Theorem. Suppose

- $\{\gamma_k\}$ satisfy $0 < \gamma_k \le \nu/L$, $\gamma_k < \nu/L$ for at least one k,
- $P_R(k) = t_k / \sum_{k=1}^N t_k$, where $t_k = \nu \gamma_k L \gamma_k^2$.

Then, we have

$$\mathbb{E}[\|\tilde{\mathbf{g}}_{\mathbf{x},R}\|^2] \leq \left[LD_F^2 + \frac{\sigma^2}{\nu} \sum_{k=1}^N (\gamma_k/m_k)\right] / \sum_{k=1}^N t_k,$$

where the expectation is w.r.t. R and $\xi_{[N]} := (\xi_1, \ldots, \xi_N)$, $D_F = \sqrt{(F(\mathbf{x}_1) - F^*)/L}$ and $\widetilde{\mathbf{g}}_{\mathbf{x},R} = P_{\mathbf{X}}(\mathbf{x}_R, G_R, \gamma_R)$. In addition, if f is convex and $0 < \gamma_k \leq \ldots \leq \gamma_N \leq \nu/L$, then

$$\mathbb{E}[F(\mathbf{x}_R) - F^*] \leq \left((\nu - L\gamma_1)V(\mathbf{x}^*, \mathbf{x}_1) + \frac{\sigma^2}{2} \sum_{k=1}^N \frac{\gamma_k^2}{m_k} \right) / \sum_{k=1}^N t_k.$$

Comment:

- If f is convex, the batch size $m_k=1$, by choosing $\gamma_k=\mathcal{O}(1/\sqrt{k})$ we still get sub-optimal convergence rate $\mathbb{E}[F(\mathbf{x}_R)-F^*]\leq \mathcal{O}(\ln N/\sqrt{N})$.
- If f is nonconvex and $m_k = 1$, regardless of choice γ_k , we can not guarantee convergence.
- If we choose $\gamma_k = \nu/L$ and $m_k = m$, we have

$$\mathbb{E}[\|\tilde{\mathbf{g}}_{\mathbf{x},R}\|^2] \le \frac{4L^2D_F^2}{\nu^2N} + \frac{2\sigma^2}{\nu^2m}$$

and if f is convex, we have

$$\mathbb{E}[f(\mathbf{x}_R) - f^*] \leq \frac{2LV(\mathbf{x}^*, \mathbf{x}_1)}{N\nu} + \frac{\sigma^2}{2Lm}$$

Corollary. Given total budget \bar{N} calls of \mathcal{SFO} . Suppose $\gamma_k = \nu/(2L)$ and $m_k = m := \min\{\lceil \max\{1, \, \sigma\sqrt{6\bar{N}}/(4L\tilde{D})\}\rceil, \bar{N}\}$ with $\bar{N} \geq 3\sigma^2/(8L^2\tilde{D}^2)$. Then, if $\tilde{D} = D_F$, we have

$$(\nu^2/L)\mathbb{E}[\|\mathbf{g}_{\mathbf{x},R}\|^2] \leq \mathcal{B}_{\bar{N}} := \frac{16L^2D_F^2}{\bar{N}} + \frac{8\sqrt{6}D_F\sigma}{\sqrt{\bar{N}}}.$$

If f is convex and $\tilde{D} = \sqrt{3V(\mathbf{x}^*, \mathbf{x}_1)/\nu}$, then

$$\mathbb{E}[F(\mathbf{x}_R) - F^*] \leq \frac{4LV(\mathbf{x}^*, \mathbf{x}_1)}{\nu \bar{N}} + \frac{2\sqrt{2V(\mathbf{x}^*, \mathbf{x}_1)}\sigma}{\sqrt{\nu \bar{N}}}.$$

Comment:

Optimal! The second term is unimprovable. (Nemirovski, 1983)

A two-phase stochastic projected gradient algorithm

• Definition: An (ϵ, Λ) -solution: $\mathbf{x} \in \mathbf{X}$ such that

$$\mathsf{Prob}\{[\|\mathbf{g}_{\mathbf{x}}(\mathbf{x})\|^2 \leq \epsilon\} \geq 1 - \Lambda,$$

where $\epsilon > 0$, $\Lambda \in (0,1)$ and $\mathbf{g}_{\mathbf{x}}(\mathbf{x}) = P_{\mathbf{X}}(\mathbf{x}, \nabla f(\mathbf{x}), \gamma)$.

• Let $\gamma_k = \gamma := \nu/(2L)$ and $m_k = m$, by Markov's inequality

$$\operatorname{\mathsf{Prob}}\left\{\|\mathbf{g}_{\mathbf{x},\scriptscriptstyle{R}}\|^2 \geq \frac{\lambda L \mathcal{B}_{\bar{N}}}{\nu^2}\right\} \leq \frac{1}{\lambda}, \qquad \text{for any } \lambda > 0.$$

• An (ϵ, Λ) -solution can be bounded by

$$\mathcal{O}\left\{\frac{1}{\Lambda\epsilon} + \frac{\sigma^2}{\Lambda^2\epsilon^2}\right\}.$$

A two-phase stochastic projected gradient algorithm

A two-phase RSPG Algorithm

Input: Initial point $\mathbf{x}_1 \in \mathbf{X}$, number of runs S, total \bar{N} of calls to the \mathcal{SFO} in each run of the RSPG algorithm, and sample size T in the post-optimization phase.

Optimization phase: For $s=1,\ldots,S$, call the RSPG algorithm with initial point x_1 , iteration limit $N=\lfloor \bar{N}/m\rfloor$ and $\gamma_k=\nu/(2L)$.

Post-optimization phase: Choose a solution $\bar{\mathbf{x}}^*$ from the candidate list $\{\bar{\mathbf{x}}_1,\ldots,\bar{\mathbf{x}}_S\}$ such that

$$\|\bar{\mathbf{g}}_{\mathbf{X}}(\bar{\mathbf{x}}^*)\| = \min_{s=1,\dots,S} \|\bar{\mathbf{g}}_{\mathbf{X}}(\bar{\mathbf{x}}_s)\|, \quad \bar{\mathbf{g}}_{\mathbf{X}}(\bar{\mathbf{x}}_s) := P_{\mathbf{X}}(\bar{\mathbf{x}}_s, \bar{G}_{\mathcal{T}}(\bar{\mathbf{x}}_s), \gamma_{R_s}),$$

where
$$\bar{G}_T(\mathbf{x}) = \frac{1}{T} \sum_{k=1}^T G(\mathbf{x}, \xi_k)$$
. **Output:** \mathbf{x}_R .

Theorem. The following statements holds for 2-RSPG algorithm:

(a) For all $\lambda > 0$, we have

$$\operatorname{Prob}\left\{\|\mathbf{g}_{\mathbf{x}}(\bar{\mathbf{x}}^*)\|^2 \geq \frac{2}{\nu^2}\left(4L\mathcal{B}_{\bar{N}} + \frac{3\lambda\sigma^2}{T}\right)\right\} \leq \frac{S}{\lambda} + 2^{-S};$$

(b) With a particular choice of $(S(\Lambda), T(\epsilon, \Lambda), \bar{N}(\epsilon))$, 2-RSPG finds an (ϵ, Λ) -solution with the number of calls of \mathcal{SFO} :

$$\mathcal{O}\left\{\frac{1}{\epsilon}\log_2\frac{1}{\Lambda} + \frac{\sigma^2}{\epsilon^2}\log_2\frac{1}{\Lambda} + \frac{\sigma^2}{\Lambda\epsilon}\log_2^2\frac{1}{\Lambda}\right\}.$$

Comment:

• The second term smaller to a factor of $1/[\Lambda^2 \log_2(1/\Lambda)]$.

Under a "Light-tail" assumption: for any $\mathbf{x}_k \in \mathbf{X}$, we have

$$\mathbb{E}[\exp{\{\|G(\mathbf{x}_k, \xi_k) - \nabla f(\mathbf{x}_k)\|^2 / \sigma^2\}}] \le \exp{\{1\}},$$

(a) for all $\lambda > 0$, we have

$$\operatorname{Prob}\left\{\|\mathbf{g}_{\mathbf{X}}(\bar{\mathbf{x}}^*)\|^2 \geq \left[\frac{8L\mathcal{B}_{\bar{N}}}{\nu^2} + \frac{12(1+\lambda)^2\sigma^2}{T\nu^2}\right]\right\} \leq S\exp(-\frac{\lambda^2}{3}) + 2^{-S}$$

(b) With a particular choice of $(S(\Lambda), T(\epsilon, \Lambda), \bar{N}(\epsilon))$, 2-RSPG finds an (ϵ, Λ) -solution with the number of calls of \mathcal{SFO} :

$$\mathcal{O}\left\{\frac{1}{\epsilon}\log_2\frac{1}{\Lambda} + \frac{\sigma^2}{\epsilon^2}\log_2\frac{1}{\Lambda} + \frac{\sigma^2}{\epsilon}\log_2^2\frac{1}{\Lambda}\right\}.$$

Comment:

• The third term smaller to a factor of $1/\Lambda$.

The Stochastic Zero-order methods

• Assumption: For any $k \ge 1$, we have

$$\mathbb{E}[F(\mathbf{x}_k, \xi_k)] = f(\mathbf{x}_k)$$
 and $F(\cdot, \xi_k) \in \mathcal{C}_L^{1,1}(\mathbb{R}^n)$ almost surely.

Definition: A smooth Gaussian approximation of f

$$f_{\mu}(\mathbf{x}) := rac{1}{(2\pi)^{rac{n}{2}}} \int f(\mathbf{x} + \mu \mathbf{v}) e^{-rac{1}{2}\|\mathbf{v}\|^2} \, d\mathbf{v} = \mathbb{E}_{\mathbf{v}}[f(\mathbf{x} + \mu \mathbf{v})],$$

where \mathbf{v} is a *n*-dimensional standard Gaussian random vector.

• Definition: the approximated stochastic gradient of f at \mathbf{x}_k

$$G_{\mu}(\mathbf{x}_k, \xi_k, \mathbf{v}) := \frac{F(\mathbf{x}_k + \mu \mathbf{v}, \xi_k) - F(\mathbf{x}_k, \xi_k)}{\mu} \mathbf{v}.$$

Comment: Nesterov, 2010.

$$f_{\mu} \in \mathcal{C}_{L_{\mu}}^{1,1}(\mathbb{R}^n)$$
 with $L_{\mu} \leq L$ and $\mathbb{E}_{\mathbf{v},\xi_k}[G_{\mu}(\mathbf{x}_k,\xi_k,\mathbf{v})] = \nabla f_{\mu}(\mathbf{x}_k)$.

A randomized stochastic gradient free algorithm

A general RSGF Algorithm

Input: Initial point $\mathbf{x}_1 \in \mathbf{X}$, iteration limit N, the stepsizes $\{\gamma_k > 0\}$, the batch sizes $\{m_k\}$, and the probability mass function P_R supported on $\{1,\ldots,N\}$.

Step 0. Let R be a random variable with density function P_R .

Step $k=1,\ldots,R-1$. Call the \mathcal{SZO} m_k times to obtain $G_{\mu,k}=(\sum_{i=1}^{m_k}G_{\mu}(\mathbf{x}_k,\xi_{k,i},\mathbf{v}_{k,i}))/m_k$, and compute

$$\mathbf{x}_{k+1} = \operatorname{Arg} \min_{\mathbf{u} \in \mathbf{X}} \left\{ \langle G_{\mu,k}, \mathbf{u} \rangle + \frac{1}{\gamma_k} V(\mathbf{u}, \mathbf{x}_k) + \phi(\mathbf{u}) \right\}.$$

Output: x_R .

Thm. Given total budget N calls of \mathcal{SZO} . Suppose $\gamma_k = \nu/(2L)$ and $m_k = \min\{\lceil \max\{\sqrt{(n+4)(M^2+\sigma^2)\bar{N}}/(L\tilde{D}), n+4\}\rceil, \bar{N}\}$ with $\bar{N} \geq \max\{(n+4)^2(M^2+\sigma^2)/(L\tilde{D})^2, n+4\}$.

If $\mu \leq D_F/\sqrt{(n+4)\overline{N}}$ and $ilde{D}=D_F$,then

$$(\nu^2/L)\mathbb{E}[\|\mathbf{g}_{\mathbf{x},R}\|^2] \leq \frac{65L^2D_F^2(n+4)}{\bar{N}} + \frac{64\sqrt{(n+4)(M^2+\sigma^2)}}{\sqrt{\bar{N}}}.$$

If f convex, $\mu \leq \sqrt{V(\mathbf{x}^*, \mathbf{x}_1)/(\nu(n+4)\bar{N})}$, $\tilde{D} = 2\sqrt{V(\mathbf{x}^*, \mathbf{x}_1)/\nu}$,

$$\mathbb{E}[F(\mathbf{x}_R)-F^*] \leq \frac{6LV(\mathbf{x}^*,\mathbf{x}_1)(n+4)}{\nu \bar{N}} + \frac{4\sqrt{V(\mathbf{x}^*,\mathbf{x}_1)(n+4)(M^2+\sigma^2)}}{\sqrt{\nu \bar{N}}}.$$

Comment:

• Number of calls of \mathcal{SZO} to find $\mathbb{E}[F(\mathbf{x}_R) - F^*] \leq \epsilon$ is bounded by $\mathcal{O}(n/\epsilon^2)$, when ϵ sufficiently small, better than $\mathcal{O}(n^2/\epsilon^2)$ by Nesterov, 2010.

- Algorithm schemes: Let $V(\mathbf{x}, \mathbf{z}) = \|\mathbf{x} \mathbf{z}\|^2/2$, $\gamma_k = 1/(2L)$. In 2-RSPG , we take S = 5 independent runs of RSPG and take T = N/2 in the post-optimization phase to choose the best $\bar{\mathbf{x}}^*$. The quality of $\bar{\mathbf{x}}^*$ is evaluated by i.i.d. sample of size $K >> \bar{N}$, where \bar{N} is the iteration number in each RSPG.
- Estimation of parameters: Use i.i.d. sample of size $N_0 = 200$ to estimate L and σ . Since $F^* \ge 0$ in our example, we set $D_F = \sqrt{2F(\mathbf{x}_1)/L}$.
- Notations: NS is the maximum number of calls of stochastic oracle. Hence, $\bar{N} = NS$ in RSPG, and $\bar{N} = NS/S$ in 2-RSPG. $\bar{\mathbf{x}}^*$ is the output. Mean and Var. are the average and variants of the results over 20 runs of each algorithm.

 A least square problem with a smoothly clipped absolute deviation penalty term (Fan & Li, 2001):

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) = \mathbb{E}_{\mathbf{u}, \mathbf{v}}[(\langle \mathbf{x}, \mathbf{u} \rangle - \mathbf{v})^2] + \sum_{j=1}^d q_{\lambda}(|\mathbf{x}_j|),$$

where \mathbf{u} is drawn from standard normal, $v = \langle \bar{\mathbf{x}}, \mathbf{u} \rangle + \xi$ with $\xi \sim \mathcal{N}(0, \bar{\sigma}^2)$ and $q_{\lambda} : \mathbb{R}_+ \to \mathbb{R}$, satisfying $q_{\lambda}(0) = 0$ with derivative defined as

$$q'_{\lambda}(\beta) = \left\{ \beta I(\beta \leq \lambda) + \frac{\max(0, a\lambda - \beta)}{(a-1)} I(\beta > \lambda) \right\}.$$

Here a > 2 and $\lambda > 0$ are constant parameters.

• In numerical experiment, we set a=3.7 and $\lambda=0.1$, three different problem sizes with n=100,500,1000 and two different noise levels with $\bar{\sigma}=0.1,1.$

Table: Estimated $\|\nabla f(\bar{\mathbf{x}}^*)\|^2$ for the least square problem (K=75,000)

NS		RSG	2-RSG	RSPG	2-RSPG	
		$n=100, ilde{\sigma}=0.1$				
1000	mean	0.2509	0.3184	0.1564	0.3176	
	var.	4.31e-2	1.68e-2	4.58e-2	2.54e-2	
5000	mean	0.0828	0.0841	0.0113	0.0164	
	var.	6.75e-3	1.03e-3	4.22e-4	3.37e-4	
25000	mean	0.0056	0.0070	0.0006	0.0010	
	var.	1.69e-4	1.08e-4	2.05e-7	1.43e-7	
		$n=100, ilde{\sigma}=1$				
1000	mean	0.3731	0.3761	0.2379	0.3567	
	var.	3.38e-2	1.40e-2	4.01e-2	1.41e-2	
5000	mean	0.1095	0.1314	0.0436	0.0323	
	var.	2.22e-2	3.96e-3	1.44e-2	8.69e-4	
25000	mean	0.0374	0.0172	0.0138	0.0048	
	var.	8.46e-3	1.83e-4	1.95e-3	8.48e-7	

Table: Estimated $\|\nabla f(\bar{\mathbf{x}}^*)\|^2$ for the least square problem (K=75,000)

NS		RSG	2-RSG	RSPG	2-RSPG
		$n=500, ilde{\sigma}=0.1$			
1000	mean	0.5479	0.6865	0.4212	0.8977
	var.	3.47e-2	6.17e-3	5.13e-2	2.64e-3
5000	mean	0.2481	0.3560	0.1030	0.1997
	var.	4.38e-2	3.45e-3	2.57e-2	2.21e-3
25000	mean	0.2153	0.0876	0.1093	0.0136
	var.	6.77e-2	1.13e-3	4.07e-2	3.24e-5
		$n=500, ilde{\sigma}=1$			
1000	mean	0.5869	0.7444	0.4371	0.7771
	var.	2.14e-2	4.18e-3	3.40e-2	5.15e-3
5000	mean	0.3603	0.4732	0.1745	0.2987
	var.	3.77e-2	8.13e-3	3.51e-2	1.87e-2
25000	mean	0.2467	0.1584	0.1271	0.0351
	var.	6.49e-2	1.87e-3	4.30e-2	2.83e-4

Table: Estimated $\|\nabla f(\bar{\mathbf{x}}^*)\|^2$ for the least square problem (K=75,000)

NS		RSG	2-RSG	RSPG	2-RSPG
		$n=1000, ilde{\sigma}=0.1$			
1000	mean	1.853	2.417	1.855	3.092
	var.	1.73e-1	1.31e-2	1.88e-1	1.29e-1
5000	mean	0.9555	1.501	0.4944	1.832
	var.	3.62e-1	6.39e-2	4.82e-1	2.36e-1
25000	mean	0.6305	0.4725	0.3402	0.1100
	var.	6.38e-1	2.08e-2	4.40e-1	4.54e-3
		$n=1000, ilde{\sigma}=1$			
1000	mean	1.868	2.407	1.701	3.208
	var.	1.44e-1	1.22e-2	1.84e-1	1.54e-1
5000	mean	1.297	1.596	0.8032	1.403
	var.	5.25e-1	5.26e-2	6.38e-1	1.10e-1
25000	mean	0.575	0.6309	0.2079	0.1806
	var.	3.43e-1	4.65e-2	1.17e-1	1.43e-2

A linear semi-supervised SVM problem (Chapelle et., 2008):

$$\begin{aligned} \min_{(\mathbf{x},b)\in\mathbb{R}^{n+1}} f(\mathbf{x},b) &= & \mathbb{E}_{\mathbf{u}_1,\mathbf{u}_2,\nu} [\lambda_1 \max\{0,1-\nu(\langle \mathbf{x},\mathbf{u}_1\rangle+b)\}^2 \\ &+ \lambda_2 e^{-5\{\langle \mathbf{x},\mathbf{u}_2\rangle+b\}^2}] + \lambda_3 \|\mathbf{x}\|_2^2. \end{aligned}$$

where $|b-2r+1| \leq \delta$, \mathbf{u}_1 and \mathbf{u}_2 are standard normal, $v \in \{0,1\}$ with $v = \mathrm{sgn}(\langle \bar{\mathbf{x}}, \mathbf{u}_1 \rangle + b)$ for some $\bar{\mathbf{x}} \in \mathbb{R}^n$. Here, λ_1 , λ_2 and λ_3 are constant parameters, $r \in (0,1)$ is the ration of positive labels and $\delta \in (0,1)$ is the tolerance.

• In numerical experiment, we set $\lambda_1=1$, $\lambda_2=\lambda_3=0.5$, $\delta=0.1$ and three different problem sizes n=100,500,1000.

Table: Estimated $\|\mathbf{g}_{\mathbf{x}}(\bar{\mathbf{x}}^*)\|^2$ (K = 75,000)

ÑS		RSPG	2-RSPG	RSPG	2-RSPG
		n = 100		n = 500	
1000	mean	1.355	0.2107	5.976	0.7955
	var.	1.21e+1	9.50e-3	1.93e + 2	6.07e-1
5000	mean	0.1032	0.1174	0.2237	0.1703
	var.	4.96e-2	4.42e-3	1.93e + 2	6.07e-1
25000	mean	0.0352	0.0699	0.2174	0.0832
25000	var.	1.13e-3	3.42e-3	2.35e-1	2.41e-4
•		n = 1000			
1000	mean	27.06	2.417		
	var.	6.00e + 3	1.73e + 1		
5000	mean	16.24	0.4726		
	var.	2.20e+3	2.85e+1		
25000	mean	0.1007	0.1378		
	var.	2.46e-2	5.63e-5		