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Stochastic Composite Optimization

Optimize
min F(x) := f(x) + ¢(x),

where

o fe Ci’l(X) , but Vf is not available. X € R" is a convex set.

@ For any x € X, a stochastic first-order oracle (SFO)
provides a stochastic gradient G(xx,&k), or a stochastic
zero-order oracle (SZQO) provides a stochastic function value
F(xx,&k), where & is a random variable supported on =.

@ ¢ is a simple convex function, but possibly nonsmooth.
(Ex.o=|-lo=1 lrvore=0.)



@ The Generalized Projection and its Properties

@ The Stochastic First-order methods
(Stochastic Projected Gradient Method)

@ The Stochastic Zero-order methods
(Stochastic Projected Gradient-free Method)

@ Preliminary Numerical Results



The generalized projection

@ The (generalized) projection:
N . 1
x"(x,g,7) = Argmin { (g, u) + —V(u,x) + ¢(u) ¢,
ueX Y

where v > 0, V is the prox-function associated with w € Siz
V(u,x) := w(u) — [w(x) + (Vw(x),u — x)].

Ext. w(x) = ||x||?/2 with v = 1, then V/(u,x) = |ju — x]||?/2.

@ Assumption: The (generalized) projection is relatively easily
solvable.



Properties of the projection

@ Definition: Let Px(x,g,7) = %(x —xT1).
@ Foranyx e X, g € R" and v > 0, we have

(8. Px(x.8.7)) = vl1Px(x8.7)17 + = [h(x") = h(x)].
o If x{ =xT(x,g1,7) and x§ = xT(x,82,7), then

’Y
x5 —x{|| < ;||g2 — g1

and )
| Px(x,81,7) — Px(x,82,7)| < ;Hgl — 8.



Properties of the projection

@ For any u € X, we have

(g, xT) + h(x™) + %V(xﬂx)

< (g,u) + h(u) + %[V(u,x) — V(u,xM)].



The Stochastic First-order methods

Assumption:

@ For any k > 1, we have

a)  E[G(xk,&k)] = VF(xk)
b) E[I|G(xk, &) — VF(xi)|IP] < o2,

for some o > 0.



A randomized stochastic projected gradient algorithm

A general RSPG Algorithm

Input: Initial point x; € X, iteration limit N, the stepsizes
{7k > 0} , the batch sizes {my}, and the probability mass function
Pr supported on {1,..., N}.

Step 0. Let R be a random variable with density function Pg.

Step k=1,...,R—1. Call the SFO my times to obtain

G(Xk,fkﬂ'), i=1,...,mg, and set G, = (Zgl G(xk,fkﬂ-))/mk,
and compute

_ 1
Xk+1 = Argmin {(G/ﬂ u) + %V(ka) + ¢(U)} :

Output: xg.



Convergence Complexity

Theorem. Suppose
o {~k} satisfy 0 < vy, <wv/L, v« < v/L for at least one k,
® Pr(k) = tk/zf(vzl ty, where ty = vy, — Ly2 .

Then, we have

N

> N
LDZ + % Z(Vk/mk)] />t
k=1

k=1

E[l|&x <[] <

where the expectation is w.r.t. R and {y) := (§1,---,&n),

Dr = \/(F(xl) - F*)/L and gx,R = PX(XRa GR)’YR)'
In addition, if f is convex and 0 < v, < ... <~y < v/L, then

2 N 2 N
E[F(xg) — F*] < ((y — Ly V(X" %) + % 3 ;—kk> /> k.
k=1 k=1



Convergence Complexity

Comment:

o If f is convex, the batch size my = 1, by choosing
vk = O(1/'k) we still get sub-optimal convergence rate
E[F(xg) — F*] < O(In N/V/N).

@ If f is nonconvex and m, = 1, regardless of choice 7, we can
not guarantee convergence.

o If we choose vy, = v/L and my = m, we have

412D% 202
V2N v2m

E[[1 £ II°] <
and if f is convex, we have

2LV (x*,x1) n o?
Nv 2Lm

E[f(xg) — 7] <
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Convergence Complexity

Corollary. Given total budget N calls of SFO. Suppose
Yk =v/(2L) and my = m := min{[max{1, oV 6N/(4LD)}], N}
with N > 302/(8L2D?). Then, if D = D, we have

16L2D2 8\/6DFU
(v*/L)Ellgx £ [I%] < By = —= T

If f is convex and D = \/3V(x*,x1)/v, then

4LV (x*,x1) n 2\/2V(x*,x1)0
vN VN

=4

E[F(xr) — F] <

Comment:

@ Optimal ! The second term is unimprovable. (Nemirovski,
1983)
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A two-phase stochastic projected gradient algorithm

@ Definition: An (e, A)-solution: x € X such that
PrOb{[ng(x)Hz < 6} > 1-A,
where € > 0, A € (0,1) and g, (x) = Px(x, Vf(x),7).

o Let v =~ :=v/(2L) and mx = m, by Markov's inequality

ALBj, 1
2 N
Prob {ng,RH > > } < v for any A > 0.

@ An (e, \)-solution can be bounded by
1 o2
© {/\_e * /\262} '
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A two-phase stochastic projected gradient algorithm

A two-phase RSPG Algorithm

Input: Initial point x; € X, number of runs S, total N of calls to
the SFQO in each run of the RSPG algorithm, and sample size T in
the post-optimization phase.

Optimization phase: For s =1,...,5, call the RSPG algorithm
with initial point xq, iteration limit N = |[N/m] and ~, = v/(2L).

Post-optimization phase: Choose a solution x* from the
candidate list {X1,...,Xs} such that

&%)l = _min &%)l &(%s) = Px(%s, Gr(%:). 78.)

)

where G7(x) = % ZkT:l G(x,&k)-
Output: xg.
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Convergence Complexity

Theorem. The following statements holds for 2-RSPG algorithm:
(a) For all A > 0, we have

2 302 S
—x\ (12 -S.
prob { g ()1 = 25 (a8 + 57 ) L < 3 2%

(b) With a particular choice of (S(A), T(e,A), N(¢€)), 2-RSPG
finds an (e, A)-solution with the number of calls of SFO:

1 1 o2 1 o2 L1
O{ Iogz/\ Iog2/\ Ao log5 /\}'

Comment:

@ The second term smaller to a factor of 1/[A?log,(1/A)].
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Convergence Complexity

Under a‘“Light-tail” assumption: for any x, € X, we have

Elexp{]| G (xk, &) — VF(xk)[[?/o?}] < exp{1},

(a) for all A > 0, we have

8LBy N 12(1 + \)?0?
V2 T2

2
Prob { ()| > |} <sen-S2s

(b) With a particular choice of (S(A), T(e,A), N(¢€)), 2-RSPG
finds an (e, A)-solution with the number of calls of SFO:
1 1 o2 1 o2 L1
O{ Iog2/\ Iog2/\—|—?log /\}'

Comment:

@ The third term smaller to a factor of 1/A.
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The Stochastic Zero-order methods

@ Assumption: For any k > 1, we have
E[F (xk, k)] = f(xk) and F(+,&x) € Ci’l(R") almost surely.

@ Definition: A smooth Gaussian approximation of f

fu(x) = ﬁ / f(x+ uv)e_%”"uz dv = E,[f(x + pv)],

where v is a n-dimensional standard Gaussian random vector.

@ Definition: the approximated stochastic gradient of f at x,

F(xk + pv, k) — F(Xkafk)v'
i

Gu(xka fka V) =

Comment: Nesterov, 2010.
fu € CLl(R") with L, < L and By g, [Gy(xk, &k, v)] = VHu(xk).
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A randomized stochastic gradient free algorithm

A general RSGF Algorithm

Input: Initial point x; € X, iteration limit N, the stepsizes
{7k > 0} , the batch sizes {my}, and the probability mass function
Pgr supported on {1,...,N}.

Step 0. Let R be a random variable with density function Pg.

Step k=1,...,R—1. Call the SZO my times to obtain
Guk = (207 Gu(Xk, &k,is Vk,i))/ Mk, and compute

_ 1
Xk+1 = Arg min {<Gp,k7 u) + %V(u,xk) + cb(U)} :

Output: xg.
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Convergence Complexity

18

Thm. Given total budget N calls of SZO. Suppose 7k = y/(2 )
and my = min{| [max{\/(n + 4)(M2 +o 2YN/(LD),n+4}], N}
with N > max{(n + 4)2(M? +a2)/(LD)2, n+ 4}.

If u < De/+/(n+4)N and D = Df ,then

(0 /UEllg, 7 < SRS S nt SO 07)

If f convex, u < /V(x*,x1)/(v(n+4)N), ,D = 2\/V(x*,x1) /v,

6LV (x*, xl)(n+4)+4\/Vx x1)(n + 4)(M? + o?)
vN VuN '

E[F (xg)—F*] <

Comment:
@ Number of calls of SZO to find E[F(xg) — F*] <¢€is
bounded by O(n/e?), when e sufficiently small, better than
O(n?/¢?) by Nesterov, 2010.



Preliminary Numerical Results

@ Algorithm schemes: Let V(x,z) = ||x — z||?/2, v« = 1/(2L).
In 2-RSPG , we take S = 5 independent runs of RSPG and
take T = N/2 in the post-optimization phase to choose the
best x*. The quality of X" is evaluated by i.i.d. sample of size
K >> N, where N is the iteration number in each RSPG.

@ Estimation of parameters: Use i.i.d. sample of size Ny = 200
to estimate L and o. Since F* > 0 in our example, we set

DF = \/2F(X1)/L.

@ Notations: NS is the maximum number of calls of stochastic
oracle. Hence, N = NS in RSPG, and N = NS/S in 2-RSPG.
X* is the output. Mean and Var. are the average and variants
of the results over 20 runs of each algorithm.
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Preliminary Numerical Results

@ A least square problem with a smoothly clipped absolute
deviation penalty term (Fan & Li, 2001):

d

min £(x) = Euu[((x,0) = v + > ax(lxi),
j=1

where u is drawn from standard normal, v = (X, u) + £ with

¢ ~ N(0,5%) and gy : R, — R, satisfying g»(0) = 0 with

derivative defined as

max(0, aX — j3)
(a—-1)

Here a > 2 and A > 0 are constant parameters.

a\(B) = {ﬂl(ﬂ <A)+ 18 > )\)} .

@ In numerical experiment, we set a = 3.7 and A = 0.1, three
different problem sizes with n = 100, 500, 1000 and two
different noise levels with ¢ = 0.1, 1.
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Preliminary Numerical Results

Table: Estimated ||V £(x*)||? for the least square problem (K = 75,000)

NS RSG 2-RSG RSPG 2-RSPG
n=100,6 =0.1

1000 mean | 0.2509 0.3184 0.1564 0.3176

var. 4.31e-2 | 1.68e-2 4.58e-2 2.54e-2

5000 mean | 0.0828 0.0841 0.0113 0.0164

var. 6.75e-3 | 1.03e-3 4.22e-4 | 3.37e-4

25000 mean | 0.0056 0.0070 0.0006 0.0010

var. 1.69e-4 | 1.08e-4 2.05e-7 | 1.43e-7
n=100,6 =1

1000 mean | 0.3731 0.3761 0.2379 0.3567

var. 3.38e-2 | 1.40e-2 4.01e-2 1.41e-2

5000 mean | 0.1095 0.1314 0.0436 0.0323

var. 2.22e-2 | 3.96e-3 1.44e-2 | 8.69e-4

25000 mean | 0.0374 0.0172 0.0138 0.0048

var. 8.46e-3 | 1.83e-4 1.95e-3 | 8.48e-7
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Preliminary Numerical Results

Table: Estimated ||V £(x*)||? for the least square problem (K = 75,000)

NS RSG 2-RSG RSPG 2-RSPG
n =500, =0.1

1000 mean | 0.5479 0.6865 0.4212 0.8977

var. 3.47e-2 | 6.17e-3 5.13e-2 | 2.64e-3

5000 mean | 0.2481 0.3560 0.1030 0.1997

var. 4.38e-2 | 3.45e-3 2.57e-2 2.21e-3

25000 mean | 0.2153 0.0876 0.1093 0.0136

var. 6.77e-2 | 1.13e-3 4.07e-2 | 3.24e-5

n=500,6 =1

1000 mean | 0.5869 0.7444 0.4371 0.7771

var. 2.14e-2 | 4.18e-3 3.40e-2 | 5.15e-3

5000 mean | 0.3603 0.4732 0.1745 0.2987

var. 3.77e-2 | 8.13e-3 3.51e-2 | 1.87e-2

25000 mean | 0.2467 0.1584 0.1271 0.0351

var. 6.49e-2 | 1.87e-3 4.30e-2 | 2.83e-4
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Preliminary Numerical Results

Table: Estimated ||V £(x*)||? for the least square problem (K = 75,000)

NS RSG 2-RSG RSPG 2-RSPG
n=1000,6 = 0.1
1000 mean 1.853 2.417 1.855 3.092
var. 1.73e-1 | 1.31e-2 1.88e-1 1.29e-1
5000 mean | 0.9555 1.501 0.4944 1.832
var. 3.62e-1 | 6.39e-2 4.82e-1 2.36e-1
25000 mean | 0.6305 0.4725 0.3402 0.1100
var. 6.38e-1 | 2.08e-2 4.40e-1 4.54e-3
n=1000,6 =1
1000 mean 1.868 2.407 1.701 3.208
var. 1.44e-1 | 1.22e-2 1.84e-1 1.54e-1
5000 mean 1.297 1.596 0.8032 1.403
var. 5.25e-1 | 5.26e-2 6.38e-1 1.10e-1
25000 mean 0.575 0.6309 0.2079 0.1806
var. 3.43e-1 | 4.65e-2 1.17e-1 1.43e-2

i}



Preliminary Numerical Results

@ A linear semi-supervised SVM problem (Chapelle et., 2008):
. 2
(X,br;”nelﬂrgn+1 f(x,b) = Ey uv[A max{0,1— v((x,u1)+ b)}

T S F WIS

where |b —2r + 1| < §, u; and uy are standard normal,
v € {0,1} with v = sgn((X,u1) + b) for some x € R". Here,
A1, A2 and A3 are constant parameters, r € (0,1) is the ration
of positive labels and ¢ € (0, 1) is the tolerance.

@ In numerical experiment, we set A1 =1, A = A3 = 0.5,
0 = 0.1 and three different problem sizes n = 100, 500, 1000.
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Preliminary Numerical Results

75

Table: Estimated ||g, (X*)||> (K = 75,000)

NS | RSPG | 2-RSPG RSPG | 2-RSPG
n =100 n = 500
1000 mean 1.355 0.2107 5.976 0.7955
var. 1.21e+1 9.50e-3 1.93e+2 | 6.07e-1
5000 mean 0.1032 0.1174 0.2237 0.1703
var. 4.96e-2 4.42e-3 1.93e+2 | 6.07e-1
95000 mean 0.0352 0.0699 0.2174 0.0832
var. 1.13e-3 3.42e-3 2.3be-1 2.41e-4
n = 1000
mean 27.06 2.417
1000 var. 6.00e+3 | 1.73e+1
mean 16.24 0.4726
5000 var. 2.20e+3 | 2.85e+1
mean 0.1007 0.1378
25000 var. 2.46e-2 5.63e-5




