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Sparse recovery

= Goal: recover a sparse vector u € R" from noisy measurements

b= Au+ w.



Sparse recovery

= Goal: recover a sparse vector u € R" from noisy measurements
b= Au+ w.
= Given A and b, we have two tasks:

1. variable/predictor selection: find the support of u

2. estimation: predict the values of u

= Largely many applications and several existing approaches



/1 subgradient

= Proposed method: variable selection based on ¢;-subgradient p

= Subdifferential of convex function f

Of(z) ={p: f(y) > f(2) + ({p,y — z), Yy € domf}.

p € Of (x) is a subgradient of f at z.



/1 subgradient
= Proposed method: variable selection based on ¢;-subgradient p
= Subdifferential of convex function f
Of(z) =A{p: f(y) = f(2) + (p,y — ), Yy € domf}.
p € Of (x) is a subgradient of f at z.

= Subdifferential of |- |:

{1y, z>0;
{-1}, z<O.
= given that p € 9|z|, then
>0, ifp=1;

T4=0, ifpe (_17 l)a
<0, ifp=-1.



= {1 subdifferential:

ANully = Blua| x -- - Ofu.

—> given that p € 9||ul|1, then

ui§ =0, if p;e(—=1,1);
<0, ifpi=—1.

|
—

= u; = +1 — wu; can be nonzero.

= we select predictors by computing p.
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Sparse variable selection

Suppose p € 9| ul|1

u € R" is sparse <= few p; = £1
Assume A is short and wide (few rows and more columns)
p € O|lulli N R(AT) = u tends to sparse

Subgaussian random A of appropriate size = sparse u w.h.p.
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Data fitting

We shall compute p such that

= sparsity: p € d||ulls NR(AT)

= fitting: ||Au — bl|2 is small
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Data fitting

We shall compute p such that

= sparsity: p € d||ulls NR(AT)

= fitting: ||Au — bl|2 is small

Proposed system:
P+ (t) = A™(b — Au(t)), (1a)
p(t) € 9fu(®)]hr (1b)
Initial solution: p(0) =0, u(0) = 0.
Notation:
= pi(t): right derivative of p(t)
= AT = %AT: normalized adjoint

= 9| - |l1: 41 subdifferential

Known as inverse-scale space (ISS) with total variation



Toy example

= Single real measurement
b=a"u+ceR

Suppose |a1| > |az|,...,|an| w.o.lg.
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= Zero initial condition —
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Toy example

Single real measurement

b=aTu+eeR

Suppose |a1| > |az|,...,|an| w.o.lg.

Zero initial condition —

pi(t)=a(b—a’0) = ba

p(t) =t (ba).

At time t; = |ba1\_1 ,

p1(t) = sign(bar), p2(t),...

Hence, ui(t1) can be nonzero.

,pn(t1) € (—1,1).
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Under technical assumptions:

= p is right continuously differentiable, and

= 4 is right continuous,

u(t1) must be the solution to

minimize ||aTu — bH% st.pi(t) - u >0, up="---=up =
u
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Under technical assumptions:

= p is right continuously differentiable, and

= 4 is right continuous,

u(t1) must be the solution to

minimize ||aTu — bH% st. pi(t) -ur >0, upg=---=1wu, =0.
u

Easy to verify
p(tr) € 9u(t1)])-

For t > t1, p(t) = p(t1) and u(t) = u(t1) stay constant



General case
Theorem
The solution path to

p+(t) = A™(b— Au(t)), p(t) € O|u(t)lh

with initial conditions to = 0, p(0) = 0, u(0) = 0, is uniquely given by:
= fork=1,2,..., K
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General case
Theorem
The solution path to

p+(t) = A™(b— Au(t)), p(t) € O|u(t)lh

with initial conditions to = 0, p(0) = 0, u(0) = 0, is uniquely given by:
= fork=1,2,..., K

= p(t) is piece-wise linear
p(t) = p(te—1) + (t — ti-1) A" (b — Au(te-1)), t € [te—1, ],

where
e := sup{t > tx—1 : p(t) € ||[u(ts—1)|1}-
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General case

Theorem
The solution path to

p+(t) = A™(b— Au(t)), p(t) € O|u(t)lh

with initial conditions to = 0, p(0) = 0, u(0) = 0, is uniquely given by:

= fork=1,2,..., K
= p(t) is piece-wise linear

p(t) = p(te_1) + (t — 1) A* (b — Au(ts_1)), t € [tr1, t],

where
e := sup{t > tx—1 : p(t) € ||[u(ts—1)|1}-

= u(t) = u(te—1) for t € [te—1, t);
if tp # oo, compute

>0, pi(te) =1,
u(tx) = arg min || Au — ng st.oui < =0, pi(ty) € (—1,1),
S 0, pz‘(tk) = —1.
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Relation to orthogonal matching pursuit (OMP)

Algorithm: start with S = () and u = 0; iterate

1. add the largest entry of A*(b— Au) to S

2. set u < argmin ||b— Aul|3 st u;=0VigS.
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1. add the largest entry of A*(b— Au) to S

2. set u < argmin ||b— Aul|3 st u;=0VigS.
Differences:

= OMP evolves index set S;

new method evolves ¢;-subgradient p, keeping more information
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Relation to orthogonal matching pursuit (OMP)

Algorithm: start with S = () and u = 0; iterate

1. add the largest entry of A*(b— Au) to S

2. set u < argmin ||b— Aul|3 st u;=0VigS.

Differences:

= OMP evolves index set S;

new method evolves ¢;-subgradient p, keeping more information
= both add one nonzero each iteration, but new method may also drop
= both have extensions to have multiple adds/drops each iteration

= similar computing cost at each iteration

Numerical results: new method is more powerful than OMP at sparse recovery
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Relation to LASSO

Model: .
min s + 5| Au — b3
Optimality conditions:
P e
i A*(b— Au), p€ 9| ul1.
Similarities:
= p€d||ulli NR(AT), and p is continuous

= as t — 0o, both u is a solution to
min ||ullx  s.t. Au=b.

= as t increases, both add and can also drop predictors

= sign consistency under conditions
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Technical differences:

= only LASSO has an objective function
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Technical differences:

only LASSO has an objective function

different p, except before the first predictor drop

different u, except at t =0 and t = c©

LASSO u is continuous; new wu is piece-wise constant

new method can set u; = 0 immediately; LASSO waits for u; to decrease 0

LASSO-+debiasing # new method



Technical differences:

only LASSO has an objective function

different p, except before the first predictor drop

different u, except at t =0 and t = c©

LASSO u is continuous; new wu is piece-wise constant

new method can set u; = 0 immediately; LASSO waits for u; to decrease 0

LASSO-+debiasing # new method

Qualitative differences:

to reach the same fitting, new method requires fewer nonzeros
given the same number of nonzeros, new method has better fitting

LASSO is biased; new method is not

There are differences in both variable selection and estimation
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Bias

Suppose both method select true S = supp(u*).

= LASSO gives

~

as(t) = (AT Ag) " Agb — %sign(aS(T))
N————’

bias
more noise = smaller 7 = stronger bias

= new method gives
us(t) = (As As) " Asb

= assuming 0-mean noise, ug(t) is unbiased since

E[us(t)] = E[(A5 As) " As(Asus +€)] = uj
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Theorem

1.

For any A and b, solution to (1) exists;

. p(t) is unique and piece-wise linear;
. Au(t) — b is piece-wise constant; ||Au(t) — b|| is non-increasing;

2
3
4.
5

There exists a piece-wise constant u(t);

. Let I = supp(u(t)) and assume 0-mean noise. Then, u(t) is an unbiased

solution to
A['LL[ = b;

There exists too such that for t > teo, u(t) = ueo is a solution to

min ||u|l1  s.t. ||Au — bl|2 = min ||Aw — b]|2.
w

Many results are essentially known from CAM 04-13 and 11-08.

20
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Prostate tumor size

= select predictors among 8 clinical features to predict prostate tumor size
= apply 4 different methods to 67 training cases
= results were tested on 30 testing cases

Predictor LS Subset | glmnet ISS

Intercept | 2.452 | 2.466 2.481 | 2.476
Icavol 0.716 | 0.667 0.622 | 0.554
lweight 0.293 | 0.366 0.289 | 0.279

age -0.143 0 -0.096 0
Ibph 0.212 0 0.188 | 0.198
svi 0.310 | 0.268 0.262 | 0.238
lcp -0.289 | -0.291 | -0.164 0
gleason -0.021 0 0 0

pgg4b 0.277 0.227 0.187 0.122
Test Error | 0.586 0.587 0.543 0.541

LS = least squares, Subset = best subset regression
glmnet = a package with LASSO, proposed approach
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Cross validation

Nogzero§lem§nts 7 7 8 8 Nogzero.;lemgnts
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ISS achieves better fitting with fewer nonzerso than LASSO (glmnet)

Note: exactly the same cross validation was applied to both methods

N
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Relation to Bregman iteration

= Discretize p = A*(b — Au) by
pk+1 — pk +5A*(b _ Auk)
= |t is the first-order optimality condition to Bregman iteration

. ; 5
v — min Dy (u; ut) + %HAu — b,

where Dy, (usu) = [lufly — [[u¥ly — (", u - u¥).

= After change of variable (CAM 04-13, 07-37)
" — min [Ju), + i||Au —o*)?
2n '

b b 4 (b — Aub).

= Still true if || - ||1 is replace by any convex regularizer



Sparse recovery from noisy measurements

E) 0 50 20 =0 E] 0 0 20 0

LASSO Bregman



Relation to linearized Bregman
= Damping p = A™(b — Au) into
p(t) + ais(t) = A*(b— Au(t)).

Consequence: u(t) is continuous.
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Relation to linearized Bregman
= Damping p = A™(b — Au) into
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= Forward Euler discretization

PP 4t = pF 4 ot + GA™ (b — Auk).
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Relation to linearized Bregman
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u = o7 shrink(A47y")
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If b is noisy, stop at a finite k for best solution.



Relation to linearized Bregman
Damping p = A*(b — Au) into
p(t) + ais(t) = A*(b— Au(t)).

Consequence: u(t) is continuous.

Forward Euler discretization

P 4 auf T = pF - an” + GA™ (b — Auk).

Can be simplified to (in a miracle way!)
w1 = o ' shrink(ATy")
yo = %(b— Auk+1)
If b is noisy, stop at a finite k for best solution.
If b is noise-free, u* converges at a linear rate to the solution of

. (¢4 .
min ||ullx + §Hu||§ s.t. ||Au — bl|2 = min || Aw — b]|2.
w

Sufficiently small « (e.g., a < in CS) = u” is an £1 minimizer

1
10[Jw* [loo



Apply different primal and dual algorithms to the same model
min|fuls + 5 | Au — b[}
TS B
Dual algorithms do better than the model!

m/n: 0.30, p/m: 0.20, u: 1.0e-004

10 as o
2 107"t ]
w
(]
=
k)
[5)
['4
—>— PADM
—=— DADM
_,||——SpaRsA
107 —FpPc_BB
FISTA s 1
—o—CGD
10° 10" 10° 10°

Iteration
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Path consistency

Question: does there 3¢ so that solution u(t) has the following properties?
= no false positive: if u; =0, then u;(t) =0
= no false negative: if u; # 0, then u;(t) # 0

= sign consistency: furthermore, sign(u) = sign(u(t)).

N
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Path consistency

Question: does there 3¢ so that solution u(t) has the following properties?
= no false positive: if u; =0, then u;(t) =0
= no false negative: if u; # 0, then u;(t) # 0

= sign consistency: furthermore, sign(u) = sign(u(t)).

Theorem
Under the Assumptions

= Gaussian noise: w ~ N(0,0°1),
* normalized column: L max; ||4;* <1,

and under appropriate conditions, the new method has sign consistency and
gives an unbias estimate to u*.

Proof is based on the next two lemmas.



No false positive

Define true support S := supp(u), and let T := S°.

Lemma

Under Assumptions, if Ags has full column rank and
max || Af As(A§As) M1 < 1—1n
jeT

for some n € (0,1), then with high probability

S - < = ] .
supp(u(s)) € S, Vs<i¢:=0 (01 / logn)

Proof uses: (i) concentration inequality and (ii) if supp(u(s)) C S, s < t, then

p(s)r = ARAs(AY As)  p(s)s + tA*TPAé w, s<t.



No false negative / sign consistency

Lemma

Under Assumptions, if A5As = vI and

tnin > max { O [ = log | 5] 0 olog|5] [logn
- viv m )’ m m |

then there exist t* (which can be given explicitly) so that with high probability

sign(u(t)) = sign(u)
and u(t) = us — (A5As) "' Ajw obeys

”U’(t) - u”oo S umin/24

= first term in max ensures H(AEAS)*lAngOO < Umin/2

= second term ensures: inf{¢ : sign(us(¢)) = sign(us)} < t.
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