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Sparse recovery

• Goal: recover a sparse vector u ∈ Rn from noisy measurements

b = Au + ω.
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Sparse recovery

• Goal: recover a sparse vector u ∈ Rn from noisy measurements

b = Au + ω.

• Given A and b, we have two tasks:

1. variable/predictor selection: find the support of u

2. estimation: predict the values of u

• Largely many applications and several existing approaches
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`1 subgradient

• Proposed method: variable selection based on `1-subgradient p

• Subdifferential of convex function f

∂f (x) = {p : f (y) ≥ f (x) + 〈p, y − x〉, ∀y ∈ domf }.

p ∈ ∂f (x) is a subgradient of f at x.
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`1 subgradient

• Proposed method: variable selection based on `1-subgradient p

• Subdifferential of convex function f

∂f (x) = {p : f (y) ≥ f (x) + 〈p, y − x〉, ∀y ∈ domf }.

p ∈ ∂f (x) is a subgradient of f at x.

• Subdifferential of | ∙ |:

∂|x| =






{1}, x > 0;

[−1, 1], x = 0;

{−1}, x < 0.

=⇒ given that p ∈ ∂|x|, then

x






≥ 0, if p = 1;

= 0, if p ∈ (−1, 1);

≤ 0, if p = −1.
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• `1 subdifferential:

∂‖u‖1 = ∂|u1| × ∙ ∙ ∙ ∂|un |.

=⇒ given that p ∈ ∂‖u‖1, then

ui






≥ 0, if pi = 1;

= 0, if pi ∈ (−1, 1);

≤ 0, if pi = −1.

• ui = ±1 =⇒ ui can be nonzero.

• we select predictors by computing p.
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Sparse variable selection

• Suppose p ∈ ∂‖u‖1

u ∈ Rn is sparse ⇐⇒ few pi = ±1

• Assume A is short and wide (few rows and more columns)

• p ∈ ∂‖u‖1 ∩R(AT ) =⇒ u tends to sparse

• Subgaussian random A of appropriate size =⇒ sparse u w.h.p.
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Data fitting

We shall compute p such that

• sparsity: p ∈ ∂‖u‖1 ∩R(AT )

• fitting: ‖Au − b‖2 is small
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Data fitting

We shall compute p such that

• sparsity: p ∈ ∂‖u‖1 ∩R(AT )

• fitting: ‖Au − b‖2 is small

Proposed system:

ṗ+(t) = A∗(b − Au(t)), (1a)

p(t) ∈ ∂‖u(t)‖1. (1b)

Initial solution: p(0) = 0, u(0) = 0.

Notation:

• ṗ+(t): right derivative of p(t)

• A∗ = 1
m AT : normalized adjoint

• ∂‖ ∙ ‖1: `1 subdifferential

Known as inverse-scale space (ISS) with total variation
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Toy example

• Single real measurement

b = aT u + ε ∈ R

Suppose |a1| > |a2|, . . . , |an | w.o.l.g.
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Toy example

• Single real measurement

b = aT u + ε ∈ R

Suppose |a1| > |a2|, . . . , |an | w.o.l.g.

• Zero initial condition =⇒

ṗ+(t) = a(b − aT 0) = ba

=⇒

p(t) = t ∙ (ba).

• At time t1 = |ba1|−1 ,

p1(t1) = sign(ba1), p2(t1), . . . , pn(t1) ∈ (−1, 1).

Hence, u1(t1) can be nonzero.
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Under technical assumptions:

• p is right continuously differentiable, and

• u is right continuous,

u(t1) must be the solution to

minimize
u

‖aT u − b‖2
2 s.t. p1(t1) ∙ u1 ≥ 0, u2 = ∙ ∙ ∙ = un = 0.
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Under technical assumptions:

• p is right continuously differentiable, and

• u is right continuous,

u(t1) must be the solution to

minimize
u

‖aT u − b‖2
2 s.t. p1(t1) ∙ u1 ≥ 0, u2 = ∙ ∙ ∙ = un = 0.

=⇒

u1(t1) =
b
a1
, u2(t1) = ∙ ∙ ∙ = un(t1) = 0.

Easy to verify

p(t1) ∈ ∂‖u(t1)‖1.

For t > t1, p(t) = p(t1) and u(t) = u(t1) stay constant
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General case

Theorem

The solution path to

ṗ+(t) = A∗(b − Au(t)), p(t) ∈ ∂‖u(t)‖1

with initial conditions t0 = 0, p(0) = 0, u(0) = 0, is uniquely given by:

• for k = 1, 2, . . . ,K
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General case

Theorem

The solution path to

ṗ+(t) = A∗(b − Au(t)), p(t) ∈ ∂‖u(t)‖1

with initial conditions t0 = 0, p(0) = 0, u(0) = 0, is uniquely given by:

• for k = 1, 2, . . . ,K

• p(t) is piece-wise linear

p(t) = p(tk−1) + (t − tk−1)A∗(b − Au(tk−1)), t ∈ [tk−1, tk ],

where

tk := sup{t > tk−1 : p(t) ∈ ‖u(tk−1)‖1}.

9 / 29



General case

Theorem

The solution path to

ṗ+(t) = A∗(b − Au(t)), p(t) ∈ ∂‖u(t)‖1

with initial conditions t0 = 0, p(0) = 0, u(0) = 0, is uniquely given by:

• for k = 1, 2, . . . ,K

• p(t) is piece-wise linear

p(t) = p(tk−1) + (t − tk−1)A∗(b − Au(tk−1)), t ∈ [tk−1, tk ],

where

tk := sup{t > tk−1 : p(t) ∈ ‖u(tk−1)‖1}.

• u(t) = u(tk−1) for t ∈ [tk−1, tk);

if tk 6=∞, compute

u(tk) = arg min
u

‖Au − b‖2
2 s.t. ui






≥ 0, pi(tk) = 1,

= 0, pi(tk) ∈ (−1, 1),

≤ 0, pi(tk) = −1.
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Example
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Relation to orthogonal matching pursuit (OMP)

Algorithm: start with S = ∅ and u = 0; iterate

1. add the largest entry of A∗(b − Au) to S

2. set u ← arg min ‖b − Au‖2
2 s.t. ui = 0 ∀i 6∈ S .
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Differences:

• OMP evolves index set S ;

new method evolves `1-subgradient p, keeping more information
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Relation to orthogonal matching pursuit (OMP)

Algorithm: start with S = ∅ and u = 0; iterate

1. add the largest entry of A∗(b − Au) to S

2. set u ← arg min ‖b − Au‖2
2 s.t. ui = 0 ∀i 6∈ S .

Differences:

• OMP evolves index set S ;

new method evolves `1-subgradient p, keeping more information

• both add one nonzero each iteration, but new method may also drop

• both have extensions to have multiple adds/drops each iteration

• similar computing cost at each iteration

Numerical results: new method is more powerful than OMP at sparse recovery

15 / 29



Relation to LASSO

Model:

min ‖u‖1 +
t

2n
‖Au − b‖2

2

Optimality conditions:

p
t

= A∗(b − Au), p ∈ ∂‖u‖1.

Similarities:

• p ∈ ∂‖u‖1 ∩R(AT ), and p is continuous

• as t →∞, both u is a solution to

min ‖u‖1 s.t. Au = b.

• as t increases, both add and can also drop predictors

• sign consistency under conditions
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Technical differences:

• only LASSO has an objective function
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Technical differences:

• only LASSO has an objective function

• different p, except before the first predictor drop

• different u, except at t = 0 and t =∞

• LASSO u is continuous; new u is piece-wise constant

• new method can set ui = 0 immediately; LASSO waits for ui to decrease 0

• LASSO+debiasing 6= new method

Qualitative differences:

• to reach the same fitting, new method requires fewer nonzeros

• given the same number of nonzeros, new method has better fitting

• LASSO is biased; new method is not

There are differences in both variable selection and estimation
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Bias

Suppose both method select true S = supp(u∗).

• LASSO gives

ûS(τ) = (AT
S AS)−1ASb −

m
τ

sign(ûS(τ))
︸ ︷︷ ︸

bias

more noise =⇒ smaller τ =⇒ stronger bias

• new method gives

uS(t) = (AT
S AS)−1ASb

• assuming 0-mean noise, uS(t) is unbiased since

E[uS(t)] = E[(AT
S AS)−1AS(ASu∗S + ε)] = u∗S
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Theorem

1. For any A and b, solution to (1) exists;

2. p(t) is unique and piece-wise linear;

3. Au(t)− b is piece-wise constant; ‖Au(t)− b‖ is non-increasing;

4. There exists a piece-wise constant u(t);

5. Let I = supp(u(t)) and assume 0-mean noise. Then, u(t) is an unbiased

solution to

AI uI = b;

6. There exists t∞ such that for t ≥ t∞, u(t) = u∞ is a solution to

min ‖u‖1 s.t. ‖Au − b‖2 = min
w
‖Aw − b‖2.

Many results are essentially known from CAM 04-13 and 11-08.
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Prostate tumor size

• select predictors among 8 clinical features to predict prostate tumor size

• apply 4 different methods to 67 training cases

• results were tested on 30 testing cases

Predictor LS Subset glmnet ISS

Intercept 2.452 2.466 2.481 2.476

lcavol 0.716 0.667 0.622 0.554

lweight 0.293 0.366 0.289 0.279

age -0.143 0 -0.096 0

lbph 0.212 0 0.188 0.198

svi 0.310 0.268 0.262 0.238

lcp -0.289 -0.291 -0.164 0

gleason -0.021 0 0 0

pgg45 0.277 0.227 0.187 0.122

Test Error 0.586 0.587 0.543 0.541

LS = least squares, Subset = best subset regression

glmnet = a package with LASSO, proposed approach
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Cross validation

ISS achieves better fitting with fewer nonzerso than LASSO (glmnet)

Note: exactly the same cross validation was applied to both methods
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Relation to Bregman iteration

• Discretize ṗ = A∗(b − Au) by

pk+1 = pk + δA∗(b − Auk).

• It is the first-order optimality condition to Bregman iteration

uk+1 ← min D‖∙‖1 (u; uk) +
δ

2n
‖Au − b‖2,

where D‖∙‖1 (u; uk) := ‖u‖1 − ‖u
k‖1 − 〈p

k , u − uk〉.

• After change of variable (CAM 04-13, 07-37)

uk+1 ←min ‖u‖1 +
δ

2n
‖Au − bk‖2,

bk+1 ←bk + (b − Auk).

• Still true if ‖ ∙ ‖1 is replace by any convex regularizer
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Sparse recovery from noisy measurements
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Relation to linearized Bregman

• Damping ṗ = A∗(b − Au) into

ṗ(t) + αu̇(t) = A∗(b − Au(t)).

Consequence: u(t) is continuous.
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Relation to linearized Bregman

• Damping ṗ = A∗(b − Au) into

ṗ(t) + αu̇(t) = A∗(b − Au(t)).

Consequence: u(t) is continuous.

• Forward Euler discretization

pk+1 + αuk+1 = pk + αuk + δA∗(b − Auk).

• Can be simplified to (in a miracle way!)

uk+1 = α−1 shrink(AT yk)

yk+1 = yk +
δ

n
(b − Auk+1)

• If b is noisy, stop at a finite k for best solution.

• If b is noise-free, uk converges at a linear rate to the solution of

min ‖u‖1 +
α

2
‖u‖2

2 s.t. ‖Au − b‖2 = min
w
‖Aw − b‖2.

Sufficiently small α (e.g., α < 1
10‖u∗‖∞

in CS) =⇒ u∗ is an `1 minimizer
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Apply different primal and dual algorithms to the same model

min ‖u‖1 +
t

2n
‖Au − b‖2

2.

Dual algorithms do better than the model!
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Path consistency

Question: does there ∃t so that solution u(t) has the following properties?

• no false positive: if ui = 0, then ui(t) = 0

• no false negative: if ui 6= 0, then ui(t) 6= 0

• sign consistency: furthermore, sign(u) = sign(u(t)).
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Path consistency

Question: does there ∃t so that solution u(t) has the following properties?

• no false positive: if ui = 0, then ui(t) = 0

• no false negative: if ui 6= 0, then ui(t) 6= 0

• sign consistency: furthermore, sign(u) = sign(u(t)).

Theorem

Under the Assumptions

• Gaussian noise: ω ∼ N (0, σ2I ),

• normalized column: 1
n maxj ‖Aj‖2 ≤ 1,

and under appropriate conditions, the new method has sign consistency and

gives an unbias estimate to u∗.

Proof is based on the next two lemmas.
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No false positive

Define true support S := supp(u), and let T := Sc.

Lemma

Under Assumptions, if AS has full column rank and

max
j∈T
‖AT

j AS(AT
S AS)−1‖1 ≤ 1− η

for some η ∈ (0, 1), then with high probability

supp(u(s)) ⊆ S , ∀s ≤ t̄ := O

(
η

σ

√
m

log n

)
.

Proof uses: (i) concentration inequality and (ii) if supp(u(s)) ⊆ S , s ≤ t, then

p(s)T = AT
T AS(AT

S AS)−1p(s)S + tA∗T PA⊥
S

w, s ≤ t.
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No false negative / sign consistency

Lemma

Under Assumptions, if A∗SAS � γI and

umin ≥ max

{

O

(
σ
√
γ

√
log |S |

m

)

,O

(
σ log |S |
ηγ

√
log n

m

)}

,

then there exist t∗ (which can be given explicitly) so that with high probability

sign(u(t)) = sign(u)

and u(t) = uS − (A∗SAS)−1A∗Sω obeys

‖u(t)− u‖∞ ≤ umin/2.

• first term in max ensures ‖(A∗SAS)−1A∗Sω‖∞ ≤ umin/2

• second term ensures: inf{t : sign(uS(t)) = sign(uS)} ≤ t̄.
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