Invariant theory:
classical, quantum and super

Gus Lehrer

University of Sydney
NSW 2006
Australia

Journal of Algebra 50th
Peking University
Beijing, June 10, 2013
Plan

1. The 3 formulations of invariant theory
2. Classical and quantum invariant theory for GL_n
3. Classical and quantum invariant theory for O_n and Sp_n
4. The problem which Brauer left
5. The second fundamental theorem–solution of Brauer’s problem in the classical cases.
6. From classical to quantum-the BMW algebra
8. Invariant theory for supergroups.
Plan

1. The 3 formulations of invariant theory
2. Classical and quantum invariant theory for GL_n
3. Classical and quantum invariant theory for O_n and Sp_n
4. The problem which Brauer left
5. The second fundamental theorem—solution of Brauer’s problem in the classical cases.
6. From classical to quantum—the BMW algebra
7. Positive characteristic and roots of unity—the non-semisimple case.
8. Invariant theory for supergroups.
Plan

1. The 3 formulations of invariant theory
2. Classical and quantum invariant theory for GL_n
3. Classical and quantum invariant theory for O_n and Sp_n
4. The problem which Brauer left
5. The second fundamental theorem–solution of Brauer’s problem in the classical cases.
6. From classical to quantum–the BMW algebra
8. Invariant theory for supergroups.
Plan

1. The 3 formulations of invariant theory
2. Classical and quantum invariant theory for GL_n
3. Classical and quantum invariant theory for O_n and Sp_n
4. The problem which Brauer left
5. The second fundamental theorem–solution of Brauer’s problem in the classical cases.
6. From classical to quantum-the BMW algebra
8. Invariant theory for supergroups.
Plan

1. The 3 formulations of invariant theory
2. Classical and quantum invariant theory for GL_n
3. Classical and quantum invariant theory for O_n and Sp_n
4. The problem which Brauer left
5. The second fundamental theorem–solution of Brauer’s problem in the classical cases.
6. From classical to quantum–the BMW algebra
8. Invariant theory for supergroups.
Plan

1. The 3 formulations of invariant theory
2. Classical and quantum invariant theory for GL_n
3. Classical and quantum invariant theory for O_n and Sp_n
4. The problem which Brauer left
5. The second fundamental theorem—solution of Brauer’s problem in the classical cases.
6. From classical to quantum—the BMW algebra
7. Positive characteristic and roots of unity—the non-semisimple case.
8. Invariant theory for supergroups.
Plan

1. The 3 formulations of invariant theory
2. Classical and quantum invariant theory for GL_n
3. Classical and quantum invariant theory for O_n and Sp_n
4. The problem which Brauer left
5. The second fundamental theorem–solution of Brauer’s problem in the classical cases.
6. From classical to quantum-the BMW algebra
8. Invariant theory for supergroups.
Plan

1. The 3 formulations of invariant theory
2. Classical and quantum invariant theory for GL_n
3. Classical and quantum invariant theory for O_n and Sp_n
4. The problem which Brauer left
5. The second fundamental theorem–solution of Brauer’s problem in the classical cases.
6. From classical to quantum-the BMW algebra
8. Invariant theory for supergroups.
The three formulations of invariant theory

Let G be a connected reductive group over \mathbb{C}, and V a representation of G.

First: Describe $\text{End}_G(V^\otimes r)$ for each r. [Non-commutative algebra]

Second: Describe $((\otimes^r V^*) \otimes (\otimes^s V))^G$. [Multilinear algebra]

Third: Let $W = \bigoplus^\ell V \bigoplus^m V^*$. Give a presentation of $\mathbb{C}[W]^G$
Geometrically: Describe $W//G$. [Commutative algebra, GIT]

In each context, these are all equivalent, by similar, but various arguments
The three formulations of invariant theory

Let G be a connected reductive group over \mathbb{C}, and V a representation of G.

First: Describe $\text{End}_G(V^\otimes r)$ for each r. [Non-commutative algebra]

Second: Describe $((\otimes^r V^*) \otimes (\otimes^s V))^G$. [Multilinear algebra]

Third: Let $W = \bigoplus \ell V \bigoplus m V^*$. Give a presentation of $\mathbb{C}[W]^G$.
Geometrically: Describe $W//G$. [Commutative algebra, GIT]

In each context, these are all equivalent, by similar, but various arguments
The three formulations of invariant theory

Let G be a connected reductive group over \mathbb{C}, and V a representation of G.

First: Describe $\text{End}_G(V^\otimes r)$ for each r. [Non-commutative algebra]

Second: Describe $((\otimes^r V^*) \otimes (\otimes^s V))^G$. [Multilinear algebra]

Third: Let $W = \bigoplus^\ell V \bigoplus^m V^*$. Give a presentation of $\mathbb{C}[W]^G$

Geometrically: Describe $W//G$. [Commutative algebra, GIT]

In each context, these are all equivalent, by similar, but various arguments
The three formulations of invariant theory

Let G be a connected reductive group over \mathbb{C}, and V a representation of G.

First: Describe $\text{End}_G(V^\otimes r)$ for each r. [Non-commutative algebra]

Second: Describe $((\otimes^r V^*) \otimes (\otimes^s V))^G$. [Multilinear algebra]

Third: Let $W = \bigoplus^\ell V \bigoplus^m V^*$. Give a presentation of $\mathbb{C}[W]^G$

Geometrically: Describe $W//_{\!/} G$. [Commutative algebra, GIT]

In each context, these are all equivalent, by similar, but various arguments
The three formulations of invariant theory

Let G be a connected reductive group over \mathbb{C}, and V a representation of G.

First: Describe $\text{End}_G(V^\otimes r)$ for each r. [Non-commutative algebra]

Second: Describe $((\otimes^r V^*) \otimes (\otimes^s V))^G$. [Multilinear algebra]

Third: Let $W = \bigoplus^\ell V \bigoplus^m V^*$. Give a presentation of $\mathbb{C}[W]^G$
Geometrically: Describe $W // G$. [Commutative algebra, GIT]

In each context, these are all equivalent, by similar, but various arguments
The three formulations of invariant theory

Let G be a connected reductive group over \mathbb{C}, and V a representation of G.

First: Describe $\text{End}_G(V^\otimes r)$ for each r. [Non-commutative algebra]

Second: Describe $(((\otimes^r V^*) \otimes (\otimes^s V))^G$. [Multilinear algebra]

Third: Let $W = \bigoplus^\ell V \bigoplus^m V^*$. Give a presentation of $\mathbb{C}[W]^G$

Geometrically: Describe $W//G$. [Commutative algebra, GIT]

In each context, these are all equivalent, by similar, but various arguments
In each case the problem divides into:

(i) Find generators (FFT)
(ii) Give all relations among these (SFT)

There are very few pairs \((G, V)\) for which satisfactory answers are known

The modern version of the subject might be said to have started with Gauss’ *Disquisitiones Arithmeticae* in 1802.

He analysed binary quadratic forms.

Most modern literature is in the context of Schur-Weyl duality, started by Schur in his thesis of 1901.
History

In each case the problem divides into:
(i) Find generators (FFT)
(ii) Give all relations among these (SFT)

There are very few pairs \((G, V)\) for which satisfactory answers are known.

The modern version of the subject might be said to have started with Gauss’ *Disquisitiones Arithmeticae* in 1802.

He analysed binary quadratic forms.

Most modern literature is in the context of Schur-Weyl duality, started by Schur in his thesis of 1901.
In each case the problem divides into:
(i) Find generators (FFT)
(ii) Give all relations among these (SFT)

There are very few pairs \((G, V)\) for which satisfactory answers are known.

The modern version of the subject might be said to have started with Gauss’ Disquisitiones Arithmeticae in 1802.

He analysed binary quadratic forms.

Most modern literature is in the context of Schur-Weyl duality, started by Schur in his thesis of 1901.
History

In each case the problem divides into:
(i) Find generators (FFT)
(ii) Give all relations among these (SFT)

There are very few pairs \((G, V)\) for which satisfactory answers are known

The modern version of the subject might be said to have started with Gauss’ *Disquisitiones Arithmeticae* in 1802.

He analysed binary quadratic forms.

Most modern literature is in the context of Schur-Weyl duality, started by Schur in his thesis of 1901.
History

In each case the problem divides into:
(i) Find generators (FFT)
(ii) Give all relations among these (SFT)

There are very few pairs \((G, V)\) for which satisfactory answers are known.

The modern version of the subject might be said to have started with Gauss’ *Disquisitiones Arithmeticae* in 1802.

He analysed binary quadratic forms.

Most modern literature is in the context of Schur-Weyl duality, started by Schur in his thesis of 1901.
History

In each case the problem divides into:
(i) Find generators (FFT)
(ii) Give all relations among these (SFT)

There are very few pairs \((G, V)\) for which satisfactory answers are known.

The modern version of the subject might be said to have started with Gauss’ Disquisitiones Arithmeticae in 1802.

He analysed binary quadratic forms.

Most modern literature is in the context of Schur-Weyl duality, started by Schur in his thesis of 1901.
In each case the problem divides into:
(i) Find generators (FFT)
(ii) Give all relations among these (SFT)

There are very few pairs \((G, V)\) for which satisfactory answers are known.

The modern version of the subject might be said to have started with Gauss’ *Disquisitiones Arithmeticae* in 1802.

He analysed binary quadratic forms.

Most modern literature is in the context of Schur-Weyl duality, started by Schur in his thesis of 1901.
Let $V = \mathbb{C}^n$, $G = \text{GL}(V)$, and consider first formulation:

Determine $\text{End}_G(V^\otimes r) \cong ((\text{End} V)^\otimes r)^G$, where
$g.v_1 \otimes \ldots \otimes v_r := gv_1 \otimes \ldots \otimes gv_r \ (g \in \text{GL}(V), v_i \in V)$.

For $\pi \in \text{Sym}_r$, $\mu_r(\pi) : v_1 \otimes \ldots \otimes v_r \mapsto v_{\pi^{-1}(1)} \otimes \ldots \otimes v_{\pi^{-1}(r)}$
lies in $\text{End}_G(V^\otimes r)$

Hence we have $\mu_r : \mathbb{C}\text{Sym}_r \to \text{End}_G(V^\otimes r)$.

FFT(Schur): μ_r is surjective $\forall r$.
Classical theory-type A

Let $V = \mathbb{C}^n$, $G = \text{GL}(V)$, and consider first formulation:

Determine $\text{End}_G(V^\otimes r) \cong ((\text{End} V)^\otimes r)^G$, where

$g.v_1 \otimes \ldots \otimes v_r := gv_1 \otimes \ldots \otimes gv_r \ (g \in \text{GL}(V), v_i \in V)$.

For $\pi \in \text{Sym}_r$, $\mu_r(\pi) : v_1 \otimes \ldots \otimes v_r \mapsto v_{\pi^{-1}(1)} \otimes \ldots \otimes v_{\pi^{-1}(r)}$

lies in $\text{End}_G(V^\otimes r)$

Hence we have $\mu_r : \mathbb{C}\text{Sym}_r \to \text{End}_G(V^\otimes r)$.

FFT(Schur): μ_r is surjective $\forall r$.

Let $V = \mathbb{C}^n$, $G = \text{GL}(V)$, and consider first formulation:

Determine $\text{End}_G(V^\otimes r) \simeq ((\text{End} V)^\otimes r)^G$, where $g.v_1 \otimes \ldots \otimes v_r := gv_1 \otimes \ldots \otimes gv_r$ ($g \in \text{GL}(V), v_i \in V$).

For $\pi \in \text{Sym}_r$, $\mu_r(\pi) : v_1 \otimes \ldots \otimes v_r \mapsto v_{\pi^{-1}(1)} \otimes \ldots \otimes v_{\pi^{-1}(r)}$ lies in $\text{End}_G(V^\otimes r)$

Hence we have $\mu_r : \mathbb{C}\text{Sym}_r \to \text{End}_G(V^\otimes r)$.

FFT(Schur): μ_r is surjective $\forall r$.
Classical theory-type A

Let $V = \mathbb{C}^n$, $G = \text{GL}(V)$, and consider first formulation:

Determine $\text{End}_G(V^\otimes r) \simeq ((\text{End} V)^\otimes r)^G$, where
$g.v_1 \otimes \ldots \otimes v_r := gv_1 \otimes \ldots \otimes gv_r \ (g \in \text{GL}(V), v_i \in V)$.

For $\pi \in \text{Sym}_r$, $\mu_r(\pi) : v_1 \otimes \ldots \otimes v_r \mapsto v_{\pi^{-1}(1)} \otimes \ldots \otimes v_{\pi^{-1}(r)}$
lies in $\text{End}_G(V^\otimes r)$

Hence we have $\mu_r : \mathbb{C}\text{Sym}_r \rightarrow \text{End}_G(V^\otimes r)$.

FFT(Schur): μ_r is surjective $\forall r$.
Let $V = \mathbb{C}^n$, $G = \text{GL}(V)$, and consider first formulation:

Determine $\text{End}_G(V^\otimes r) \cong ((\text{End} V)^\otimes r)^G$, where $g.v_1 \otimes \ldots \otimes v_r := gv_1 \otimes \ldots \otimes gv_r \,(g \in \text{GL}(V), v_i \in V)$.

For $\pi \in \text{Sym}_r$, $\mu_r(\pi) : v_1 \otimes \ldots \otimes v_r \mapsto v_{\pi^{-1}(1)} \otimes \ldots \otimes v_{\pi^{-1}(r)}$

lies in $\text{End}_G(V^\otimes r)$

Hence we have $\mu_r : \mathbb{C}\text{Sym}_r \rightarrow \text{End}_G(V^\otimes r)$.

FFT(Schur): μ_r is surjective $\forall r$.
Let $V = \mathbb{C}^n$, $G = \text{GL}(V)$, and consider first formulation:

Determine $\text{End}_G(V^\otimes r) \simeq ((\text{End} V)^\otimes r)^G$, where $g.v_1 \otimes \ldots \otimes v_r := gv_1 \otimes \ldots \otimes gv_r$ ($g \in \text{GL}(V), v_i \in V$).

For $\pi \in \text{Sym}_r$, $\mu_r(\pi) : v_1 \otimes \ldots \otimes v_r \mapsto v_{\pi^{-1}(1)} \otimes \ldots \otimes v_{\pi^{-1}(r)}$ lies in $\text{End}_G(V^\otimes r)$.

Hence we have $\mu_r : \mathbb{CSym}_r \to \text{End}_G(V^\otimes r)$.

FFT(Schur): μ_r is surjective $\forall r$.
For any \(r \), let \(a(r) = \sum_{\pi \in \text{Sym}_r} \varepsilon(\pi) \pi \) (\(\text{Sym}_r \)-alternator)

Since \(a(n + 1) V^{\otimes n+1} \subseteq \wedge^{n+1}(V) = 0 \), clearly \(a(n + 1) \in \text{Ker}(\mu_r) \).

\[
\text{SFT(Schur) Ker}(\mu_r) = \langle a(n + 1) \rangle. \mu_r \text{ is an isomorphism if } r < n + 1.
\]

Both FFT and SFT are most easily proved using semisimplicity, but are valid much more generally.

These statements may be easily translated into their equivalents in the multilinear and commutative algebra formulations.
For any r, let $a(r) = \sum_{\pi \in \text{Sym}_r} \varepsilon(\pi) \pi$ (Sym$_r$-alternator)

Since $a(n + 1) V^\otimes n+1 \subseteq \Lambda^{n+1}(V) = 0$, clearly $a(n + 1) \in \text{Ker}(\mu_r)$.

SFT(Schur) $\text{Ker}(\mu_r) = \langle a(n + 1) \rangle$. μ_r is an isomorphism if $r < n + 1$.

Both FFT and SFT are most easily proved using semisimplicity, but are valid much more generally.

These statements may be easily translated into their equivalents in the multilinear and commutative algebra formulations.
For any r, let $a(r) = \sum_{\pi \in \text{Sym}_r} \varepsilon(\pi)\pi$ (Sym$_r$-alternator)

Since $a(n + 1)V^\otimes n+1 \subseteq \wedge^{n+1}(V) = 0$, clearly $a(n + 1) \in \text{Ker}(\mu_r)$.

SFT(Schur) Ker(μ_r) = $\langle a(n + 1) \rangle$. μ_r is an isomorphism if $r < n + 1$.

Both FFT and SFT are most easily proved using semisimplicity, but are valid much more generally.

These statements may be easily translated into their equivalents in the multilinear and commutative algebra formulations.
For any r, let $a(r) = \sum_{\pi \in \text{Sym}_r} \varepsilon(\pi) \pi$ (Sym$_r$-alternator)

Since $a(n + 1) V^\otimes n+1 \subseteq \Lambda^{n+1}(V) = 0$, clearly $a(n + 1) \in \text{Ker}(\mu_r)$.

SFT(Schur) $\text{Ker}(\mu_r) = \langle a(n + 1) \rangle$. μ_r is an isomorphism if $r < n + 1$.

Both FFT and SFT are most easily proved using semisimplicity, but are valid much more generally.

These statements may be easily translated into their equivalents in the multilinear and commutative algebra formulations.
For any r, let $a(r) = \sum_{\pi \in \text{Sym}_r} \varepsilon(\pi)\pi$ (Sym$_r$-alternator)

Since $a(n+1) V^{\otimes n+1} \subseteq \Lambda^{n+1}(V) = 0$, clearly $a(n+1) \in \text{Ker} (\mu_r)$.

SFT(Schur) Ker$(\mu_r) = \langle a(n+1) \rangle$. μ_r is an isomorphism if $r < n+1$.

Both FFT and SFT are most easily proved using semisimplicity, but are valid much more generally.

These statements may be easily translated into their equivalents in the multilinear and commutative algebra formulations.
Quantum theory-type A

Let $K = \mathbb{C}(q)$, q an indeterminate, $\mathcal{U}_q = U_q(g\mathfrak{l}_n)$, a K-Hopf algebra.

\mathcal{C}: the category of f.d. $g\mathfrak{l}_n(\mathbb{C})$-modules.

If \mathcal{C}_q is the category of f.d. \mathcal{U}_q-modules of type $(1, 1, ..., 1)$, we have a weight-preserving equivalence $\mathcal{C} \xrightarrow{\sim} \mathcal{C}_q$, where $v \in W_q \subset \mathcal{C}_q$ has weight λ if $K_i v = q^{\langle \alpha_i, \lambda \rangle} v$.

There is a universal R-matrix $\check{R} \in \mathcal{T}(\mathcal{U}_q \otimes \mathcal{U}_q)$ such that for any $V_q \in \mathcal{C}_q$:

(i) $R := P \check{R} \in \text{End}_{\mathcal{U}_q}(V_q \otimes V_q)$, where $P (v \otimes w) = w \otimes v$.

(ii) If $R_i = R$ acting on the $(i, i + 1)$ factors of $V_q^\otimes r$, then $R_i R_j = R_j R_i$ if $|i - j| \geq 2$, and $R_i R_{i+1} R_i = R_{i+1} R_i R_{i+1}$.

Hence we have $\mu_{r, q} : KB_r \to \text{End}_{\mathcal{U}_q}(V_q^\otimes r)$. for any $V_q \in \mathcal{C}_q$, where B_r is the r-string braid group.
Quantum theory-type A

Let $K = \mathbb{C}(q)$, q an indeterminate, $U_q = U_q(\mathfrak{gl}_n)$, a K-Hopf algebra.

C: the category of f.d. $\mathfrak{gl}_n(\mathbb{C})$-modules.

If C_q is the category of f.d. U_q-modules of type $(1, 1, \ldots, 1)$, we have a weight-preserving equivalence $C \xrightarrow{\sim} C_q$, where $v \in W_q \in C_q$ has weight λ if $K_i v = q^{\langle \alpha_i, \lambda \rangle} v$.

There is a universal R-matrix $\check{R} \in (U_q \otimes U_q)$ such that for any $V_q \in C_q$:

(i) $R := P\check{R} \in \text{End}_{U_q}(V_q \otimes V_q)$, where $P(v \otimes w) = w \otimes v$.

(ii) If $R_i = R$ acting on the $(i, i+1)$ factors of $V_q^\otimes r$, then $R_i R_j = R_j R_i$ if $|i - j| \geq 2$, and $R_i R_{i+1} R_i = R_{i+1} R_i R_{i+1}$

Hence we have $\mu_{r,q} : KB_r \rightarrow \text{End}_{U_q}(V_q^\otimes r)$, for any $V_q \in C_q$, where B_r is the r-string braid group.
Quantum theory-type \(A \)

Let \(K = \mathbb{C}(q) \), \(q \) an indeterminate,
\(\mathcal{U}_q = \mathcal{U}_q(\mathfrak{gl}_n) \), a \(K \)-Hopf algebra.

\(\mathcal{C} \): the category of f.d. \(\mathfrak{gl}_n(\mathbb{C}) \)-modules.

If \(\mathcal{C}_q \) is the category of f.d. \(\mathcal{U}_q \)-modules of type \((1, 1, ..., 1)\),
we have a weight-preserving equivalence \(\mathcal{C} \rightarrow \mathcal{C}_q \),
where \(v \in \mathcal{W}_q \in \mathcal{C}_q \) has weight \(\lambda \) if \(K_i v = q^{\langle \alpha_i, \lambda \rangle} v \).

There is a universal \(R \)-matrix \(\check{R} \in (\mathcal{U}_q \otimes \mathcal{U}_q) \) such that for any \(\mathcal{V}_q \in \mathcal{C}_q \):

(i) \(R := P \check{R} \in \text{End}_{\mathcal{U}_q}(\mathcal{V}_q \otimes \mathcal{V}_q) \), where \(P(v \otimes w) = w \otimes v \).

(ii) If \(R_i = R \) acting on the \((i, i + 1)\) factors of \(\mathcal{V}_q^\otimes r \),
then \(R_i R_j = R_j R_i \) if \(|i - j| \geq 2 \), and \(R_i R_{i+1} R_i = R_{i+1} R_i R_{i+1} \).

Hence we have \(\mu_{r,q} : KB_r \rightarrow \text{End}_{\mathcal{U}_q}(\mathcal{V}_q^\otimes r) \).

for any \(\mathcal{V}_q \in \mathcal{C}_q \), where \(B_r \) is the \(r \)-string braid group.
Quantum theory-type A

Let $K = \mathbb{C}(q)$, q an indeterminate, $U_q = U_q(\mathfrak{gl}_n)$, a K-Hopf algebra.

\mathcal{C}: the category of f.d. $\mathfrak{gl}_n(\mathbb{C})$-modules.

If \mathcal{C}_q is the category of f.d. U_q-modules of type $(1, 1, ..., 1)$, we have a weight-preserving equivalence $\mathcal{C} \xrightarrow{\sim} \mathcal{C}_q$, where $\nu \in W_q \in \mathcal{C}_q$ has weight λ if $K_i \nu = q^{\langle \alpha_i, \lambda \rangle} \nu$.

There is a universal R-matrix $\tilde{R} \in (U_q \otimes U_q)$ such that for any $V_q \in \mathcal{C}_q$:

(i) $R := P \tilde{R} \in \text{End}_{U_q}(V_q \otimes V_q)$, where $P(\nu \otimes w) = w \otimes \nu$.

(ii) If $R_i = R$ acting on the $(i, i + 1)$ factors of $V_q^\otimes r$, then $R_i R_j = R_j R_i$ if $|i - j| \geq 2$, and $R_i R_{i+1} R_i = R_{i+1} R_i R_{i+1}$

Hence we have $\mu_{r,q} : K\mathcal{B}_r \to \text{End}_{U_q}(V_q^\otimes r)$.

for any $V_q \in \mathcal{C}_q$, where \mathcal{B}_r is the r-string braid group.
Quantum theory-type A

Let $K = \mathbb{C}(q)$, q an indeterminate, $\mathcal{U}_q = \mathcal{U}_q(\mathfrak{gl}_n)$, a K-Hopf algebra.

\mathcal{C}: the category of f.d. $\mathfrak{gl}_n(\mathbb{C})$-modules.

If \mathcal{C}_q is the category of f.d. \mathcal{U}_q-modules of type $(1, 1, ..., 1)$, we have a weight-preserving equivalence $\mathcal{C} \xrightarrow{\sim} \mathcal{C}_q$, where $v \in \mathcal{W}_q \subseteq \mathcal{C}_q$ has weight λ if $K_i v = q^{\langle \alpha_i, \lambda \rangle} v$.

There is a universal R-matrix $\check{R} \in (\mathcal{U}_q \otimes \mathcal{U}_q)$ such that for any $V_q \in \mathcal{C}_q$:

(i) $R := P \check{R} \in \text{End}_{\mathcal{U}_q}(V_q \otimes V_q)$, where $P(v \otimes w) = w \otimes v$.

(ii) If $R_i = R$ acting on the $(i, i + 1)$ factors of $V_q^\otimes r$, then $R_i R_j = R_j R_i$ if $|i - j| \geq 2$, and $R_i R_{i+1} R_i = R_{i+1} R_i R_{i+1}$

Hence we have $\mu_{r,q} : K\mathcal{B}_r \rightarrow \text{End}_{\mathcal{U}_q}(V_q^\otimes r)$, for any $V_q \in \mathcal{C}_q$, where \mathcal{B}_r is the r-string braid group.
Quantum theory-type A

Let $K = \mathbb{C}(q)$, q an indeterminate, $U_q = U_q(\mathfrak{gl}_n)$, a K-Hopf algebra.

C: the category of f.d. $\mathfrak{gl}_n(\mathbb{C})$-modules.

If C_q is the category of f.d. U_q-modules of type $(1, 1, ..., 1)$, we have a weight-preserving equivalence $C \xrightarrow{\sim} C_q$, where $v \in W_q \in C_q$ has weight λ if $K_i v = q^{\langle \alpha_i, \lambda \rangle} v$.

There is a universal R-matrix $\check{R} \in (U_q \otimes U_q)$ such that for any $V_q \in C_q$:

(i) $R := P \check{R} \in \text{End}_{U_q}(V_q \otimes V_q)$, where $P(v \otimes w) = w \otimes v$.

(ii) If $R_i = R$ acting on the $(i, i + 1)$ factors of $V_q^\otimes r$, then $R_i R_j = R_j R_i$ if $|i - j| \geq 2$, and $R_i R_{i+1} R_i = R_{i+1} R_i R_{i+1}$

Hence we have $\mu_{r,q} : KB_r \rightarrow \text{End}_{U_q}(V_q^\otimes r)$ for any $V_q \in C_q$, where B_r is the r-string braid group.
Quantum theory-type A

Let $K = \mathbb{C}(q)$, q an indeterminate, $\mathcal{U}_q = \mathcal{U}_q(\mathfrak{gl}_n)$, a K-Hopf algebra.

\mathcal{C}: the category of f.d. $\mathfrak{gl}_n(\mathbb{C})$-modules.

If \mathcal{C}_q is the category of f.d. \mathcal{U}_q-modules of type $(1, 1, \ldots, 1)$, we have a weight-preserving equivalence $\mathcal{C} \xrightarrow{\sim} \mathcal{C}_q$, where $v \in \mathcal{W}_q \subseteq \mathcal{C}_q$ has weight λ if $K_i v = q^{\langle \alpha_i, \lambda \rangle} v$.

There is a universal R-matrix $\tilde{R} \in (\mathcal{U}_q \otimes \mathcal{U}_q)$ such that for any $V_q \in \mathcal{C}_q$:

(i) $R := P\tilde{R} \in \text{End}_{\mathcal{U}_q}(V_q \otimes V_q)$, where $P(v \otimes w) = w \otimes v$.

(ii) If $R_i = R$ acting on the $(i, i + 1)$ factors of $V_q^\otimes r$, then $R_i R_j = R_j R_i$ if $|i - j| \geq 2$, and $R_i R_{i+1} R_i = R_{i+1} R_i R_{i+1}$.

Hence we have $\mu_{r,q} : K\mathcal{B}_r \to \text{End}_{\mathcal{U}_q}(V_q^\otimes r)$, for any $V_q \in \mathcal{C}_q$, where \mathcal{B}_r is the r-string braid group.
Quantum theory-type A

Let $K = \mathbb{C}(q)$, q an indeterminate, $U_q = U_q(\mathfrak{gl}_n)$, a K-Hopf algebra.

C: the category of f.d. $\mathfrak{gl}_n(\mathbb{C})$-modules.

If C_q is the category of f.d. U_q-modules of type $(1,1,...,1)$, we have a weight-preserving equivalence $C \sim C_q$, where $v \in W_q \in C_q$ has weight λ if $K_i v = q^{\langle \alpha_i, \lambda \rangle} v$.

There is a universal R-matrix $\tilde{R} \in (U_q \otimes U_q)$ such that for any $V_q \in C_q$:

(i) $R := P \tilde{R} \in \text{End}_{U_q}(V_q \otimes V_q)$, where $P(v \otimes w) = w \otimes v$.

(ii) If $R_i = R$ acting on the $(i, i+1)$ factors of $V_q^\otimes r$, then $R_i R_j = R_j R_i$ if $|i - j| \geq 2$, and $R_i R_{i+1} R_i = R_{i+1} R_i R_{i+1}$.

Hence we have $\mu_{r,q} : KB_r \rightarrow \text{End}_{U_q}(V_q^\otimes r)$.

for any $V_q \in C_q$, where B_r is the r-string braid group.
FFT: If V_q is the ‘natural module’ for $U_q(\mathfrak{gl}_n)$, $\mu_{r,q}$ is surjective.

This is easily proved directly from the classical case using integral forms of U_q and V_q.

Next, observe that if $\varepsilon_1, \ldots, \varepsilon_n$ are the standard weights, $V_q = L_{\varepsilon_1, q}$, and $V_q \otimes V_q \simeq L_{2\varepsilon_1, q} \oplus L_{\varepsilon_1 + \varepsilon_2, q}$.

Known: R acts on $L_{2\varepsilon_1, q}$ and $L_{\varepsilon_1 + \varepsilon_2, q}$ as the scalar $q, -q^{-1}$ respectively.

Hence $\mu_{r,q}$ factors through $\nu_r : K\mathcal{B}_r / \langle (R_1 - q)(R_1 + q^{-1}) \rangle \rightarrow H_r(q) \rightarrow \text{End}_{U_q}(V_q^\otimes r)$.

For any r, let $a_q(r) = \sum_{w \in \text{Sym}_r} (-q)^{-\ell(w)} T_w \in H_r(q)$ (The $H_r(q)$-alternator). $T_w =$standard basis element of $H_r(q)$

SFT: $\text{Ker}(\nu_r) = \langle a_q(n+1) \rangle$. ν_r is an isomorphism if $r < n + 1$.
FFT: If V_q is the ‘natural module’ for $U_q(\mathfrak{gl}_n)$, $\mu_{r,q}$ is surjective. This is easily proved directly from the classical case using integral forms of U_q and V_q.

Next, observe that if $\epsilon_1, \ldots, \epsilon_n$ are the standard weights, $V_q = L_{\epsilon_1,q}$, and $V_q \otimes V_q \simeq L_{2\epsilon_1,q} \oplus L_{\epsilon_1+\epsilon_2,q}$.

Known: R acts on $L_{2\epsilon_1,q}$ and $L_{\epsilon_1+\epsilon_2,q}$ as the scalar $q, -q^{-1}$ respectively.

Hence $\mu_{r,q}$ factors through $\nu_r : KB_r / \langle (R_1 - q)(R_1 + q^{-1}) \rangle = H_r(q) \to \text{End}_{U_q}(V_q \otimes^r)$.

For any r, let $a_q(r) = \sum_{w \in \text{Sym}_r} (-q)^{-\ell(w)} T_w \in H_r(q)$ (The $H_r(q)$-alternator). $T_w =$standard basis element of $H_r(q)$

SFT: $\text{Ker}(\nu_r) = \langle a_q(n+1) \rangle$. ν_r is an isomorphism if $r < n+1$.
FFT: If V_q is the ‘natural module’ for $U_q(\mathfrak{gl}_n)$, $\mu_{r,q}$ is surjective. This is easily proved directly from the classical case using integral forms of U_q and V_q.

Next, observe that if $\varepsilon_1, \ldots, \varepsilon_n$ are the standard weights, $V_q = L_{\varepsilon_1,q}$, and $V_q \otimes V_q \cong L_{2\varepsilon_1,q} \oplus L_{\varepsilon_1+\varepsilon_2,q}$.

Known: R acts on $L_{2\varepsilon_1,q}$ and $L_{\varepsilon_1+\varepsilon_2,q}$ as the scalar $q, -q^{-1}$ respectively.

Hence $\mu_{r,q}$ factors through $\nu_r : KB_r/\langle (R_1 - q)(R_1 + q^{-1}) \rangle = H_r(q) \to \text{End}_{U_q}(V_q^\otimes r)$.

For any r, let $a_q(r) = \Sigma_{w \in \text{Sym}_r} (-q)^{-\ell(w)} T_w \in H_r(q)$ (The $H_r(q)$-alternator). T_w = standard basis element of $H_r(q)$.

SFT: $\text{Ker}(\nu_r) = \langle a_q(n+1) \rangle$. ν_r is an isomorphism if $r < n+1$.
FFT: If V_q is the ‘natural module’ for $U_q(\mathfrak{gl}_n)$, $\mu_{r,q}$ is surjective.

This is easily proved directly from the classical case using integral forms of U_q and V_q.

Next, observe that if $\varepsilon_1, \ldots, \varepsilon_n$ are the standard weights, $V_q = L_{\varepsilon_1,q}$, and $V_q \otimes V_q \simeq L_{2\varepsilon_1,q} \oplus L_{\varepsilon_1+\varepsilon_2,q}$.

Known: R acts on $L_{2\varepsilon_1,q}$ and $L_{\varepsilon_1+\varepsilon_2,q}$ as the scalar $q, -q^{-1}$ respectively.

Hence $\mu_{r,q}$ factors through $\nu_r : KB_r/\langle(R_1 - q)(R_1 + q^{-1})\rangle = H_r(q) \rightarrow \text{End}_{U_q}(V_q^{\otimes r})$.

For any r, let $a_q(r) = \sum_{w \in \text{Sym}_r} (-q)^{-\ell(w)} T_w \in H_r(q)$ (The $H_r(q)$-alternator). $T_w =$standard basis element of $H_r(q)$

SFT: $\text{Ker}(\nu_r) = \langle a_q(n+1) \rangle$. ν_r is an isomorphism if $r < n+1$.
FFT: If V_q is the ‘natural module’ for $U_q(\mathfrak{gl}_n)$, $\mu_{r,q}$ is surjective. This is easily proved directly from the classical case using integral forms of U_q and V_q.

Next, observe that if $\epsilon_1, \ldots, \epsilon_n$ are the standard weights, $V_q = L_{\epsilon_1,q}$, and $V_q \otimes V_q \simeq L_{2\epsilon_1,q} \oplus L_{\epsilon_1+\epsilon_2,q}$.

Known: R acts on $L_{2\epsilon_1,q}$ and $L_{\epsilon_1+\epsilon_2,q}$ as the scalar $q, -q^{-1}$ respectively.

Hence $\mu_{r,q}$ factors through $\nu_r : KB_r / \langle (R_1 - q)(R_1 + q^{-1}) \rangle = H_r(q) \rightarrow \text{End}_{U_q}(V_q^\otimes r)$.

For any r, let $a_q(r) = \sum_{w \in \text{Sym}_r} (-q)^{-\ell(w)} T_w \in H_r(q)$ (The $H_r(q)$-alternator). $T_w =$standard basis element of $H_r(q)$

SFT: $\text{Ker}(\nu_r) = \langle a_q(n+1) \rangle$. ν_r is an isomorphism if $r < n+1$.
FFT: If V_q is the ‘natural module’ for $U_q(\mathfrak{gl}_n)$, $\mu_{r,q}$ is surjective.
This is easily proved directly from the classical case using integral forms of U_q and V_q.

Next, observe that if $\varepsilon_1, \ldots, \varepsilon_n$ are the standard weights, $V_q = L_{\varepsilon_1,q}$, and $V_q \otimes V_q \simeq L_{2\varepsilon_1,q} \oplus L_{\varepsilon_1+\varepsilon_2,q}$.

Known: R acts on $L_{2\varepsilon_1,q}$ and $L_{\varepsilon_1+\varepsilon_2,q}$ as the scalar $q, -q^{-1}$ respectively.
Hence $\mu_{r,q}$ factors through $\nu_r : KB_r/\langle(R_1 - q)(R_1 + q^{-1})\rangle = H_r(q) \to \operatorname{End}_{U_q}(V_q^\otimes r)$.

For any r, let $a_q(r) = \sum_{w \in \operatorname{Sym}_r} (-q)^{-\ell(w)} T_w \in H_r(q)$ (The $H_r(q)$-alternator). $T_w =$standard basis element of $H_r(q)$

SFT: $\ker(\nu_r) = \langle a_q(n+1) \rangle$. ν_r is an isomorphism if $r < n+1$.
FFT: If V_q is the ‘natural module’ for $U_q(\mathfrak{gl}_n)$, $\mu_{r,q}$ is surjective.

This is easily proved directly from the classical case using integral forms of U_q and V_q.

Next, observe that if $\epsilon_1, \ldots, \epsilon_n$ are the standard weights, $V_q = L_{\epsilon_1,q}$, and $V_q \otimes V_q \simeq L_{2\epsilon_1,q} \oplus L_{\epsilon_1+\epsilon_2,q}$.

Known: R acts on $L_{2\epsilon_1,q}$ and $L_{\epsilon_1+\epsilon_2,q}$ as the scalar $q, -q^{-1}$ respectively.

Hence $\mu_{r,q}$ factors through $\nu_r : KB_r / \langle (R_1 - q)(R_1 + q^{-1}) \rangle = H_r(q) \rightarrow \text{End}_{U_q}(V_q \otimes^r)$.

For any r, let $a_q(r) = \sum_{w \in \text{Sym}_r} (-q)^{-\ell(w)} T_w \in H_r(q)$ (The $H_r(q)$-alternator). $T_w =$standard basis element of $H_r(q)$.

SFT: $\text{Ker}(\nu_r) = \langle a_q(n+1) \rangle$. ν_r is an isomorphism if $r < n+1$.
Classical theory-orthogonal and symplectic cases

Let $V = \mathbb{C}^n$, $(-, -)$ a non-degenerate symmetric or skew symmetric form on V.

$G = O(V)$ or $Sp(V)$, the isometry group of V, $(-, -)$.

Let $(b_i), (b'_i)$ be dual bases of V, so $(b'_i, b_j) = \delta_{ij}$.

Define $c_0 := \sum_i b_i \otimes b'_i$. Then c_0 is independent of basis, and $\in (V \otimes V)^G$.

Define $e \in \text{End}_G(V \otimes^2)$ by $e(v \otimes w) = (v, w)c_0$, and $e_i \in \text{End}_G(V \otimes^r)$ as e, acting on factors $(i, i + 1)$ of $V \otimes^r$.

Note that $e_i^2 = \varepsilon ne_i$, where $\varepsilon = 1$ if $G = O(V)$, and $\varepsilon = -1$ if $G = Sp(V)$.

We also still have the permutation endomorphisms of type A, which are generated by the interchanges r_i of the $i, i + 1$ factors in $\text{End}_G(V \otimes^r)$.
Classical theory-orthogonal and symplectic cases

Let $V = \mathbb{C}^n, (-,-)$ a non-degenerate symmetric or skew symmetric form on V.

$G = O(V)$ or $Sp(V)$, the isometry group of $V, (-,-)$.

Let $(b_i), (b'_i)$ be dual bases of V, so $(b'_i, b_j) = \delta_{ij}$.

Define $c_0 := \sum_i b_i \otimes b'_i$. Then c_0 is independent of basis, and $\in (V \otimes V)^G$.

Define $e \in \text{End}_G(V \otimes^2)$ by $e(v \otimes w) = (v, w)c_0$, and $e_i \in \text{End}_G(V \otimes^r)$ as e, acting on factors $(i, i+1)$ of $V \otimes^r$.

Note that $e_i^2 = \varepsilon ne_i$, where $\varepsilon = 1$ if $G = O(V)$, and $\varepsilon = -1$ if $G = Sp(V)$.

We also still have the permutation endomorphisms of type A, which are generated by the interchanges r_i of the $i, i+1$ factors in $\text{End}_G(V \otimes^r)$.
Classical theory-orthogonal and symplectic cases

Let $V = \mathbb{C}^n$, $(-,-)$ a non-degenerate symmetric or skew symmetric form on V.

$G = O(V)$ or $Sp(V)$, the isometry group of V, $(-,-)$.

Let $(b_i), (b'_i)$ be dual bases of V, so $(b'_i, b_j) = \delta_{ij}$.

Define $c_0 := \sum_i b_i \otimes b'_i$. Then c_0 is independent of basis, and $\in (V \otimes V)^G$.

Define $e \in \text{End}_G(V \otimes^2)$ by $e(v \otimes w) = (v, w)c_0$, and $e_i \in \text{End}_G(V \otimes^r)$ as e, acting on factors $(i, i + 1)$ of $V \otimes^r$.

Note that $e_i^2 = \varepsilon ne_i$, where $\varepsilon = 1$ if $G = O(V)$, and $\varepsilon = -1$ if $G = Sp(V)$.

We also still have the permutation endomorphisms of type A, which are generated by the interchanges r_i of the $i, i + 1$ factors in $\text{End}_G(V \otimes^r)$.
Classical theory-orthogonal and symplectic cases

Let $V = \mathbb{C}^{n}, (-, -)$ a non-degenerate symmetric or skew symmetric form on V.

$G = O(V)$ or $Sp(V)$, the isometry group of $V, (-, -)$.

Let $(b_i), (b'_i)$ be dual bases of V, so $(b'_i, b_j) = \delta_{ij}$. Define $c_0 := \sum_i b_i \otimes b'_i$. Then c_0 is independent of basis, and $\in (V \otimes V)^G$.

Define $e \in \text{End}_G(V^\otimes 2)$ by $e(v \otimes w) = (v, w)c_0$, and $e_i \in \text{End}_G(V^\otimes r)$ as e, acting on factors $(i, i + 1)$ of $V^\otimes r$.

Note that $e_i^2 = \varepsilon ne_i$, where $\varepsilon = 1$ if $G = O(V)$, and $\varepsilon = -1$ if $G = Sp(V)$.

We also still have the permutation endomorphisms of type A, which are generated by the interchanges r_i of the $i, i + 1$ factors in $\text{End}_G(V^\otimes r)$.
Classical theory-orthogonal and symplectic cases

Let $V = \mathbb{C}^n$, $(-, -)$ a non-degenerate symmetric or skew symmetric form on V.

$G = O(V)$ or $Sp(V)$, the isometry group of V, $(-, -)$.

Let $(b_i), (b'_i)$ be dual bases of V, so $(b'_i, b_j) = \delta_{ij}$.

Define $c_0 := \sum_i b_i \otimes b'_i$. Then c_0 is independent of basis, and $\in (V \otimes V)^G$.

Define $e \in \text{End}_G(V^\otimes 2)$ by $e(v \otimes w) = (v, w)c_0$, and $e_i \in \text{End}_G(V^\otimes r)$ as e, acting on factors $(i, i + 1)$ of $V^\otimes r$.

Note that $e_i^2 = \varepsilon ne_i$, where $\varepsilon = 1$ if $G = O(V)$, and $\varepsilon = -1$ if $G = Sp(V)$.

We also still have the permutation endomorphisms of type A, which are generated by the interchanges r_i of the $i, i + 1$ factors in $\text{End}_G(V^\otimes r)$.
Classical theory-orthogonal and symplectic cases

Let $V = \mathbb{C}^n$, $(-,-)$ a non-degenerate symmetric or skew symmetric form on V.

$G = O(V)$ or $Sp(V)$, the isometry group of V, $(-,-)$.

Let $(b_i), (b'_i)$ be dual bases of V, so $(b'_i, b_j) = \delta_{ij}$.

Define $c_0 := \sum_i b_i \otimes b'_i$. Then c_0 is independent of basis, and $\in (V \otimes V)^G$.

Define $e \in \text{End}_G(V \otimes^2)$ by $e(v \otimes w) = (v, w)c_0$, and $e_i \in \text{End}_G(V \otimes^r)$ as e, acting on factors $(i, i+1)$ of $V \otimes^r$.

Note that $e_i^2 = \varepsilon ne_i$, where $\varepsilon = 1$ if $G = O(V)$, and $\varepsilon = -1$ if $G = Sp(V)$.

We also still have the permutation endomorphisms of type A, which are generated by the interchanges r_i of the $i, i+1$ factors in $\text{End}_G(V \otimes^r)$.
Let $V = \mathbb{C}^n$, $(-,-)$ a non-degenerate symmetric or skew symmetric form on V.

$G = O(V)$ or $Sp(V)$, the isometry group of V, $(-,-)$.

Let $(b_i), (b'_i)$ be dual bases of V, so $(b'_i, b_j) = \delta_{ij}$.

Define $c_0 := \sum_i b_i \otimes b'_i$. Then c_0 is independent of basis, and $\in (V \otimes V)^G$.

Define $e \in \text{End}_G(V \otimes^2)$ by $e(v \otimes w) = (v, w)c_0$, and $e_i \in \text{End}_G(V \otimes^r)$ as e, acting on factors $(i, i+1)$ of $V \otimes^r$.

Note that $e^2_i = \varepsilon ne_i$, where $\varepsilon = 1$ if $G = O(V)$, and $\varepsilon = -1$ if $G = Sp(V)$.

We also still have the permutation endomorphisms of type A, which are generated by the interchanges r_i of the $i, i + 1$ factors in $\text{End}_G(V \otimes^r)$.
Brauer showed (1937) that if the diagrams s_i and f_i are as shown:

Figure: $s_i(\mapsto \varepsilon r_i), f_i(\mapsto e_i)$

then the endomorphisms they represent satisfy the same composition laws as the diagrams under concatenation, provided free circles are replaced by εn.

Brauer showed that these diagrams generate an algebra $B_r(\varepsilon n)$, which has rank $\prod_{1 \leq i \leq n}(2i - 1)$, with basis the ‘Brauer diagrams from n to n’.
Brauer showed (1937) that if the diagrams s_i and f_i are as shown:

![Diagrams](image)

then the endomorphisms they represent satisfy the same composition laws as the diagrams under concatenation, provided free circles are replaced by εn.

Brauer showed that these diagrams generate an algebra $B_r(\varepsilon n)$, which has rank $\prod_{1 \leq i \leq n}(2i - 1)$, with basis the ‘Brauer diagrams from n to n’.
Brauer showed (1937) that if the diagrams s_i and f_i are as shown:

\[
\begin{array}{ccccccc}
\cdots & \times & \cdots & , & \cdots & \times & \cdots \\
i - 1 & & & & & i - 1 & \\
\end{array}
\]

then the endomorphisms they represent satisfy the same composition laws as the diagrams under concatenation, provided free circles are replaced by εn.

Brauer showed that these diagrams generate an algebra $B_r(\varepsilon n)$, which has rank $\prod_{1 \leq i \leq n}(2i - 1)$, with basis the ‘Brauer diagrams from n to n’.
Brauer showed (1937) that if the diagrams s_i and f_i are as shown:

Figure: $s_i(\mapsto \varepsilon r_i), f_i(\mapsto e_i)$

then the endomorphisms they represent satisfy the same composition laws as the diagrams under concatenation, provided free circles are replaced by εn.

Brauer showed that these diagrams generate an algebra $B_r(\varepsilon n)$, which has rank $\prod_{1 \leq i \leq n}(2i - 1)$, with basis the ‘Brauer diagrams from n to n’.
Brauer showed (1937) that if the diagrams s_i and f_i are as shown:

\[\ldots \quad \times \quad \ldots \quad , \quad \ldots \quad \times \quad \ldots \]

\[i - 1 \quad \quad i - 1 \quad \quad \]

then the endomorphisms they represent satisfy the same composition laws as the diagrams under concatenation, provided free circles are replaced by εn.

Brauer showed that these diagrams generate an algebra $B_r(\varepsilon n)$, which has rank $\prod_{1 \leq i \leq n}(2i - 1)$, with basis the ‘Brauer diagrams from n to n’.
This shows that there is a homomorphism
\(\eta_r : B_r(\varepsilon n) \rightarrow \text{End}_G(V^\otimes r) \)
Brauer used this to prove in 1937 the following form of the FFT.

FFT (Brauer 1937): \(\eta_r : B_r(\varepsilon n) \rightarrow \text{End}_G(V^\otimes r) \) is surjective

This may be proved using the FFT for type A, together with a density argument, based on the fact that \(G \) is birationally equivalent to \(\mathbb{A}^{\dim G} \). (cf. Atiyah-Bott-Patodi 1972.)

But Brauer proved no version of the SFT-i.e. the question of \(\text{Ker}(\eta_r) \) was left open.

This question is complicated by the fact that \(B_r(\varepsilon n) \) is not usually semisimple.

In fact: Rui and Si have shown that: \(B_r(\varepsilon n) \) is semisimple iff \(r \leq d + 1 \) where \(d = n \) if \(G = O(V) \) and \(d = \frac{n}{2} \) is \(G = \text{Sp}(V) \).

Hermann Weyl called \(B_r(\delta) \) ‘enigmatic’.
This shows that there is a homomorphism
\(\eta_r : B_r(\varepsilon n) \to \text{End}_G(V^\otimes r) \)
Brauer used this to prove in 1937 the following form of the FFT.

FFT (Brauer 1937): \(\eta_r : B_r(\varepsilon n) \to \text{End}_G(V^\otimes r) \) is surjective

This may be proved using the FFT for type \(A \), together with a density argument, based on the fact that \(G \) is birationally equivalent to \(\mathbb{A}^{\dim G} \). (cf. Atiyah-Bott-Patodi 1972.)

But Brauer proved no version of the SFT-i.e. the question of \(\text{Ker}(\eta_r) \) was left open.

This question is complicated by the fact that \(B_r(\varepsilon n) \) is not usually semisimple.

In fact: Rui and Si have shown that: \(B_r(\varepsilon n) \) is semisimple iff
\(r \leq d + 1 \) where \(d = n \) if \(G = O(V) \) and \(d = \frac{n}{2} \) is \(G = \text{Sp}(V) \).

Hermann Weyl called \(B_r(\delta) \) ‘enigmatic’.
This shows that there is a homomorphism

\[\eta_r : B_r(\varepsilon n) \rightarrow \text{End}_G(V \otimes r) \]

Brauer used this to prove in 1937 the following form of the FFT.

FFT (Brauer 1937): \(\eta_r : B_r(\varepsilon n) \rightarrow \text{End}_G(V \otimes r) \) is surjective

This may be proved using the FFT for type A, together with a density argument, based on the fact that \(G \) is birationally equivalent to \(\mathbb{A}^{\dim G} \). (cf. Atiyah-Bott-Patodi 1972.)

But Brauer proved no version of the SFT - i.e. the question of \(\text{Ker}(\eta_r) \) was left open.

This question is complicated by the fact that \(B_r(\varepsilon n) \) is not usually semisimple.

In fact: Rui and Si have shown that: \(B_r(\varepsilon n) \) is semisimple iff

\[r \leq d + 1 \text{ where } d = n \text{ if } G = O(V) \text{ and } d = \frac{n}{2} \text{ is } G = \text{Sp}(V). \]

Hermann Weyl called \(B_r(\delta) \) ‘enigmatic’.
This shows that there is a homomorphism
\(\eta_r : B_r(\varepsilon n) \to \text{End}_G(V^\otimes r) \)
Brauer used this to prove in 1937 the following form of the FFT.

FFT (Brauer 1937): \(\eta_r : B_r(\varepsilon n) \to \text{End}_G(V^\otimes r) \) is surjective

This may be proved using the FFT for type \(A \), together with a density argument, based on the fact that \(G \) is birationally equivalent to \(\mathbb{A}^{\dim G} \). (cf. Atiyah-Bott-Patodi 1972.)

But Brauer proved no version of the SFT-i.e. the question of \(\text{Ker}(\eta_r) \) was left open.

This question is complicated by the fact that \(B_r(\varepsilon n) \) is not usually semisimple.

In fact: Rui and Si have shown that: \(B_r(\varepsilon n) \) is semisimple iff \(r \leq d + 1 \) where \(d = n \) if \(G = O(V) \) and \(d = \frac{n}{2} \) is \(G = \text{Sp}(V) \).

Hermann Weyl called \(B_r(\delta) \) ‘enigmatic’.
This shows that there is a homomorphism \(\eta_r : B_r(\varepsilon n) \to \text{End}_G (V \otimes r) \).

Brauer used this to prove in 1937 the following form of the FFT.

FFT (Brauer 1937): \(\eta_r : B_r(\varepsilon n) \to \text{End}_G (V \otimes r) \) is surjective

This may be proved using the FFT for type \(A \), together with a density argument, based on the fact that \(G \) is birationally equivalent to \(\mathbb{A}^{\dim G} \). (cf. Atiyah-Bott-Patodi 1972.)

But Brauer proved no version of the SFT - i.e. the question of \(\text{Ker}(\eta_r) \) was left open.

This question is complicated by the fact that \(B_r(\varepsilon n) \) is not usually semisimple.

In fact: Rui and Si have shown that: \(B_r(\varepsilon n) \) is semisimple iff \(r \leq d + 1 \) where \(d = n \) if \(G = O(V) \) and \(d = \frac{n}{2} \) is \(G = \text{Sp}(V) \).

Hermann Weyl called \(B_r(\delta) \) ‘enigmatic’.
This shows that there is a homomorphism
\(\eta_r : B_r(\varepsilon n) \to \text{End}_G(V^\otimes r) \)

Brauer used this to prove in 1937 the following form of the FFT.

FFT (Brauer 1937): \(\eta_r : B_r(\varepsilon n) \to \text{End}_G(V^\otimes r) \) is surjective

This may be proved using the FFT for type A, together with a density argument, based on the fact that \(G \) is birationally equivalent to \(\mathbb{A}^{\dim G} \). (cf. Atiyah-Bott-Patodi 1972.)

But Brauer proved no version of the SFT-i.e. the question of \(\ker(\eta_r) \) was left open.

This question is complicated by the fact that \(B_r(\varepsilon n) \) is not usually semisimple.

In fact: Rui and Si have shown that: \(B_r(\varepsilon n) \) is semisimple iff \(r \leq d + 1 \) where \(d = n \) if \(G = O(V) \) and \(d = \frac{n}{2} \) is \(G = \text{Sp}(V) \).

Hermann Weyl called \(B_r(\delta) \) ‘enigmatic’.
This shows that there is a homomorphism
\(\eta_r : B_r(\varepsilon n) \to \text{End}_G(V \otimes r) \)
Brauer used this to prove in 1937 the following form of the FFT.

FFT (Brauer 1937): \(\eta_r : B_r(\varepsilon n) \to \text{End}_G(V \otimes r) \) is surjective

This may be proved using the FFT for type A, together with a density argument, based on the fact that \(G \) is birationally equivalent to \(\mathbb{A}^\dim G \). (cf. Atiyah-Bott-Patodi 1972.)

But Brauer proved no version of the SFT—i.e. the question of \(\ker(\eta_r) \) was left open.

This question is complicated by the fact that \(B_r(\varepsilon n) \) is not usually semisimple.

In fact: Rui and Si have shown that: \(B_r(\varepsilon n) \) is semisimple iff \(r \leq d + 1 \) where \(d = n \) if \(G = O(V) \) and \(d = \frac{n}{2} \) is \(G = \text{Sp}(V) \).

Hermann Weyl called \(B_r(\delta) \) ‘enigmatic’.
This shows that there is a homomorphism
\[\eta_r : B_r(\epsilon n) \rightarrow \text{End}_G(V \otimes r) \]
Brauer used this to prove in 1937 the following form of the FFT.

FFT (Brauer 1937): \[\eta_r : B_r(\epsilon n) \rightarrow \text{End}_G(V \otimes r) \text{ is surjective} \]

This may be proved using the FFT for type A, together with a density argument, based on the fact that \(G \) is birationally equivalent to \(\mathbb{A}^{\text{dim } G} \). (cf. Atiyah-Bott-Patodi 1972.)

But Brauer proved no version of the SFT -i.e. the question of \(\text{Ker}(\eta_r) \) was left open.

This question is complicated by the fact that \(B_r(\epsilon n) \) is not usually semisimple.

In fact: Rui and Si have shown that: \(B_r(\epsilon n) \) is semisimple iff \(r \leq d + 1 \) where \(d = n \) if \(G = O(V) \) and \(d = \frac{n}{2} \) is \(G = \text{Sp}(V). \)

Hermann Weyl called \(B_r(\delta) \) ‘enigmatic’.
This shows that there is a homomorphism
\[\eta_r : B_r(\varepsilon n) \to \text{End}_G(V^\otimes r) \]
Brauer used this to prove in 1937 the following form of the FFT.

FFT (Brauer 1937): \(\eta_r : B_r(\varepsilon n) \to \text{End}_G(V^\otimes r) \) is surjective

This may be proved using the FFT for type \(A \), together with a density argument, based on the fact that \(G \) is birationally equivalent to \(\mathbb{A}^{\dim G} \). (cf. Atiyah-Bott-Patodi 1972.)

But Brauer proved no version of the SFT-i.e. the question of \(\text{Ker}(\eta_r) \) was left open.

This question is complicated by the fact that \(B_r(\varepsilon n) \) is not usually semisimple.

In fact: Rui and Si have shown that: \(B_r(\varepsilon n) \) is semisimple iff \(r \leq d + 1 \) where \(d = n \) if \(G = O(V) \) and \(d = \frac{n}{2} \) is \(G = \text{Sp}(V) \).

Hermann Weyl called \(B_r(\delta) \) ‘enigmatic’.
Brauer’s open question.

Determine the kernel of $\eta_r : B_r(\varepsilon n) \to \text{End}_G(V^\otimes r)$.

Note that there have existed versions of the SFT in formulation 2 (multilinear); but no structural version. The following provides a solution, and we will see applies in non-semisimple situations as well.

Theorem (L-Ruibin Zhang)(SFT): There is a quasi-idempotent $\Psi \in B_{d+1}(\varepsilon n)$, explicitly described in terms of diagrams, such that $\text{Ker}(\eta_r)$ is the ideal of $B_r(\varepsilon n)$ generated by Ψ. (Recall $d = n$ if $G = O(V)$ and $d = \frac{n}{2}$ is $G = \text{Sp}(V)$.)

To describe Ψ we will need the element $\Sigma_\varepsilon(r) \in B_r(\varepsilon n)$.

\[\Sigma_\varepsilon(r) \in B_r(\varepsilon n) := \sum_{w \in \text{Sym}_r} (-\varepsilon)^{\ell(w)} w.\]

$\Sigma_\varepsilon(r) \in B_r(\varepsilon n)$ will be denoted by a rectangle diagrammatically.
Brauer’s open question.

Determine the kernel of $\eta_r : B_r(\varepsilon n) \to \text{End}_G(V^\otimes r)$.

Note that there have existed versions of the SFT in formulation 2 (multilinear); but no structural version. The following provides a solution, and we will see applies in non-semisimple situations as well.

Theorem (L-Ruibin Zhang)(SFT): There is a quasi-idempotent $\Psi \in B_{d+1}(\varepsilon n)$, explicitly described in terms of diagrams, such that $\text{Ker}(\eta_r)$ is the ideal of $B_r(\varepsilon n)$ generated by Ψ. (Recall $d = n$ if $G = O(V)$ and $d = \frac{n}{2}$ is $G = \text{Sp}(V)$.)

To describe Ψ we will need the element $\Sigma_\varepsilon(r) \in B_r(\varepsilon n)$.

$\Sigma_\varepsilon(r) \in B_r(\varepsilon n) := \sum_{w \in \text{Sym}_r} (-\varepsilon)^{\ell(w)} w$.

$\Sigma_\varepsilon(r) \in B_r(\varepsilon n)$ will be denoted by a rectangle diagrammatically.
Brauer’s open question.

Determine the kernel of $\eta_r : B_r(\varepsilon n) \to \text{End}_G(V^\otimes r)$.

Note that there have existed versions of the SFT in formulation 2 (multilinear); but no structural version. The following provides a solution, and we will see applies in non-semisimple situations as well.

Theorem (L-Ruibin Zhang)(SFT): There is a quasi-idempotent $\Psi \in B_{d+1}(\varepsilon n)$, explicitly described in terms of diagrams, such that $\text{Ker}(\eta_r)$ is the ideal of $B_r(\varepsilon n)$ generated by Ψ. (Recall $d = n$ if $G = O(V)$ and $d = \frac{n}{2}$ is $G = \text{Sp}(V)$.)

To describe Ψ we will need the element $\Sigma_\varepsilon(r) \in B_r(\varepsilon n)$.

$\Sigma_\varepsilon(r) \in B_r(\varepsilon n) := \sum_{w \in \text{Sym}_r} (-\varepsilon)^{\ell(w)} w$.

$\Sigma_\varepsilon(r) \in B_r(\varepsilon n)$ will be denoted by a rectangle diagrammatically.
Brauer’s open question.

Determine the kernel of $\eta_r : B_r(\varepsilon n) \to \text{End}_G(V^\otimes r)$.

Note that there have existed versions of the SFT in formulation 2 (multilinear); but no structural version. The following provides a solution, and we will see applies in non-semisimple situations as well.

Theorem (L-Ruibin Zhang)(SFT): There is a quasi-idempotent $\Psi \in B_{d+1}(\varepsilon n)$, explicitly described in terms of diagrams, such that $\text{Ker}(\eta_r)$ is the ideal of $B_r(\varepsilon n)$ generated by Ψ. (Recall $d = n$ if $G = O(V)$ and $d = \frac{n}{2}$ is $G = \text{Sp}(V)$.)

To describe Ψ we will need the element $\Sigma_\varepsilon(r) \in B_r(\varepsilon n)$.

$\Sigma_\varepsilon(r) \in B_r(\varepsilon n) := \sum_{w \in \text{Sym}_r} (\varepsilon)^{\ell(w)} w.$

$\Sigma_\varepsilon(r) \in B_r(\varepsilon n)$ will be denoted by a rectangle diagrammatically.
Brauer’s open question.

Determine the kernel of $\eta_r : B_r(\varepsilon n) \to \text{End}_G(V^\otimes r)$.

Note that there have existed versions of the SFT in formulation 2 (multilinear); but no structural version. The following provides a solution, and we will see applies in non-semisimple situations as well.

Theorem (L-Ruibin Zhang)(SFT): There is a quasi-idempotent $\Psi \in B_{d+1}(\varepsilon n)$, explicitly described in terms of diagrams, such that $\text{Ker}(\eta_r)$ is the ideal of $B_r(\varepsilon n)$ generated by Ψ. (Recall $d = n$ if $G = O(V)$ and $d = \frac{n}{2}$ is $G = \text{Sp}(V)$.)

To describe Ψ we will need the element $\Sigma_{\varepsilon}(r) \in B_r(\varepsilon n)$.

$\Sigma_{\varepsilon}(r) \in B_r(\varepsilon n) := \sum_{w \in \text{Sym}_r} (-\varepsilon)^{\ell(w)} w.$

$\Sigma_{\varepsilon}(r) \in B_r(\varepsilon n)$ will be denoted by a rectangle diagrammatically.
Brauer’s open question.

Determine the kernel of $\eta_r : B_r(\epsilon n) \to \text{End}_G(V^\otimes r)$.

Note that there have existed versions of the SFT in formulation 2 (multilinear); but no structural version. The following provides a solution, and we will see applies in non-semisimple situations as well.

Theorem (L-Ruibin Zhang)(SFT): There is a quasi-idempotent $\Psi \in B_{d+1}(\epsilon n)$, explicitly described in terms of diagrams, such that $\text{Ker}(\eta_r)$ is the ideal of $B_r(\epsilon n)$ generated by Ψ. (Recall $d = n$ if $G = O(V)$ and $d = \frac{n}{2}$ is $G = \text{Sp}(V)$.)

To describe Ψ we will need the element $\Sigma_\epsilon(r) \in B_r(\epsilon n)$.

$$\Sigma_\epsilon(r) \in B_r(\epsilon n) := \sum_{w \in \text{Sym}_r} (-\epsilon)^{\ell(w)} w.$$

$\Sigma_\epsilon(r) \in B_r(\epsilon n)$ will be denoted by a rectangle diagrammatically.
Brauer’s open question.

Determine the kernel of $\eta_r : B_r(\varepsilon n) \to \text{End}_G(V^\otimes r)$.

Note that there have existed versions of the SFT in formulation 2 (multilinear); but no structural version. The following provides a solution, and we will see applies in non-semisimple situations as well.

Theorem (L-Ruibin Zhang)(SFT): There is a quasi-idempotent $\Psi \in B_{d+1}(\varepsilon n)$, explicitly described in terms of diagrams, such that $\text{Ker}(\eta_r)$ is the ideal of $B_r(\varepsilon n)$ generated by Ψ. (Recall $d = n$ if $G = O(V)$ and $d = \frac{n}{2}$ is $G = \text{Sp}(V)$.)

To describe Ψ we will need the element $\Sigma_\varepsilon(r) \in B_r(\varepsilon n)$.

$$\Sigma_\varepsilon(r) \in B_r(\varepsilon n) := \sum_{w \in \text{Sym}_r} (-\varepsilon)^{\ell(w)} w.$$
Brauer's open question.

Determine the kernel of $\eta_r : B_r(\varepsilon n) \to \text{End}_G(V^\otimes r)$.

Note that there have existed versions of the SFT in formulation 2 (multilinear); but no structural version. The following provides a solution, and we will see applies in non-semisimple situations as well.

Theorem (L-Ruibin Zhang)(SFT): There is a quasi-idempotent $\Psi \in B_{d+1}(\varepsilon n)$, explicitly described in terms of diagrams, such that $\text{Ker}(\eta_r)$ is the ideal of $B_r(\varepsilon n)$ generated by Ψ. (Recall $d = n$ if $G = O(V)$ and $d = \frac{n}{2}$ if $G = \text{Sp}(V)$.)

To describe Ψ we will need the element $\Sigma_{\varepsilon}(r) \in B_r(\varepsilon n)$.

$$\Sigma_{\varepsilon}(r) \in B_r(\varepsilon n) := \sum_{w \in \text{Sym}_r} (-\varepsilon)^{\ell(w)} w.$$ $\Sigma_{\varepsilon}(r) \in B_r(\varepsilon n)$ will be denoted by a rectangle diagrammatically.
The symplectic case

The answer is easiest to describe when $G = \text{Sp}_n = \text{Sp}_{2d}$.

Let $\Psi = \sum_{\text{ALL Brauer diagrams } D \in B_{d+1}(-2d)} D$

Then Ψ has the following properties (L-Zhang, arXiv):

- $\Psi^2 = (d + 1)! \Psi$
- $\Psi f_i = f_i \Psi = 0 \ \forall i, 1 \leq i \leq d$
- $\Psi \pi = \pi \Psi \ \forall \pi \in \text{Sym}_{d+1}$ Thus $\frac{1}{(d+1)!} \Psi$ is the central idempotent in $B_{d+1}(-2d)$ corresponding to the trivial representation.
- Ψ generates $\text{Ker}(\eta_r) \ \forall r$

The proof is not direct— it involves other expressions for Ψ, in terms of $\Sigma_-(d + 1)$
The symplectic case

The answer is easiest to describe when $G = \text{Sp}_n = \text{Sp}_{2d}$.

Let $\Psi = \sum_{\text{ALL Brauer diagrams } D \in B_{d+1}(-2d)} D$

Then Ψ has the following properties (L-Zhang, arXiv):

- $\Psi^2 = (d + 1)! \Psi$
- $\Psi f_i = f_i \Psi = 0 \ \forall \ i, 1 \leq i \leq d$
- $\Psi \pi = \pi \Psi \ \forall \pi \in \text{Sym}_{d+1}$ Thus $\frac{1}{(d+1)!} \Psi$ is the central idempotent in $B_{d+1}(-2d)$ corresponding to the trivial representation.
- Ψ generates $\text{Ker}(\eta_r) \ \forall r$

The proof is not direct—it involves other expressions for Ψ, in terms of $\Sigma_-(d + 1)$.
The symplectic case

The answer is easiest to describe when \(G = \text{Sp}_n = \text{Sp}_{2d} \).

Let \(\Psi = \sum_{\text{ALL Brauer diagrams } D \in B_{d+1}(-2d)} D \)

Then \(\Psi \) has the following properties (L-Zhang, arXiv):

- \(\Psi^2 = (d + 1)!\Psi \)
- \(\Psi f_i = f_i \Psi = 0 \ \forall \ i, \ 1 \leq i \leq d \)
- \(\Psi \pi = \pi \Psi \ \forall \pi \in \text{Sym}_{d+1} \) Thus \(\frac{1}{(d+1)!} \Psi \) is the central idempotent in \(B_{d+1}(-2d) \) corresponding to the trivial representation.
- \(\Psi \) generates \(\text{Ker}(\eta_r) \) \(\forall \ r \)

The proof is not direct—it involves other expressions for \(\Psi \), in terms of \(\sum_\pi (d + 1) \)
The symplectic case

The answer is easiest to describe when \(G = \text{Sp}_n = \text{Sp}_{2d} \).

Let \(\Psi = \sum_{\text{ALL Brauer diagrams } D \in B_{d+1}(-2d)} D \)

Then \(\Psi \) has the following properties (L-Zhang, arXiv):

- \(\Psi^2 = (d + 1)! \Psi \)
- \(\Psi f_i = f_i \Psi = 0 \ \forall \ i, 1 \leq i \leq d \)
- \(\Psi \pi = \pi \Psi \ \forall \pi \in \text{Sym}_{d+1} \) Thus \(\frac{1}{(d+1)!} \Psi \) is the central idempotent in \(B_{d+1}(-2d) \) corresponding to the trivial representation.
- \(\Psi \) generates \(\text{Ker}(\eta_r) \) \(\forall r \)

The proof is not direct—it involves other expressions for \(\Psi \), in terms of \(\sum_{-}(d + 1) \)
The symplectic case

The answer is easiest to describe when $G = \text{Sp}_n = \text{Sp}_{2d}$.

Let $\psi = \sum_{\text{ALL Brauer diagrams } D \in B_{d+1}(-2d)} D$

Then ψ has the following properties (L-Zhang, arXiv):

- $\psi^2 = (d + 1)!\psi$
- $\psi f_i = f_i \psi = 0 \ \forall i, 1 \leq i \leq d$
- $\psi \pi = \pi \psi \ \forall \pi \in \text{Sym}_{d+1}$ Thus $\frac{1}{(d+1)!} \psi$ is the central idempotent in $B_{d+1}(-2d)$ corresponding to the trivial representation.
- ψ generates $\text{Ker}(\eta_r) \ \forall r$

The proof is not direct—it involves other expressions for ψ, in terms of $\sum_{-}(d + 1)$.
The symplectic case

The answer is easiest to describe when $G = \text{Sp}_n = \text{Sp}_{2d}$.

Let $\psi = \sum_{\text{ALL Brauer diagrams } D \in B_{d+1}(-2d)} D$

Then ψ has the following properties (L-Zhang, arXiv):

- $\psi^2 = (d + 1)! \psi$
- $\psi f_i = f_i \psi = 0 \forall i, 1 \leq i \leq d$
- $\psi \pi = \pi \psi \forall \pi \in \text{Sym}_{d+1}$ Thus $\frac{1}{(d+1)!} \psi$ is the central idempotent in $B_{d+1}(-2d)$ corresponding to the trivial representation.
- ψ generates $\text{Ker}(\eta_r) \forall r$

The proof is not direct—it involves other expressions for ψ, in terms of $\Sigma_-(d + 1)$
The symplectic case

The answer is easiest to describe when $G = \text{Sp}_n = \text{Sp}_{2d}$.

Let $\Psi = \sum_{\text{ALL Brauer diagrams } D \in B_{d+1}(-2d)} D$

Then Ψ has the following properties (L-Zhang, arXiv):

- $\Psi^2 = (d + 1)! \Psi$
- $\Psi f_i = f_i \Psi = 0 \ \forall \ i, 1 \leq i \leq d$
- $\Psi \pi = \pi \Psi \ \forall \pi \in \text{Sym}_{d+1}$

 Thus $\frac{1}{(d+1)!} \Psi$ is the central idempotent in $B_{d+1}(-2d)$ corresponding to the trivial representation.

- Ψ generates $\text{Ker}(\eta_r) \ \forall r$

The proof is not direct—it involves other expressions for Ψ, in terms of $\Sigma_-(d + 1)$.
The symplectic case

The answer is easiest to describe when $G = \text{Sp}_n = \text{Sp}_{2d}$.

Let $\Psi = \sum_{\text{ALL Brauer diagrams } D \in B_{d+1}(-2d)} D$

Then Ψ has the following properties (L-Zhang, arXiv):

- $\Psi^2 = (d + 1)! \Psi$
- $\Psi f_i = f_i \Psi = 0 \ \forall \ i, \ 1 \leq i \leq d$
- $\Psi \pi = \pi \Psi \ \forall \pi \in \text{Sym}_{d+1}$ Thus $\frac{1}{(d+1)!} \Psi$ is the central idempotent in $B_{d+1}(-2d)$ corresponding to the trivial representation.
- Ψ generates $\text{Ker}(\eta_r) \ \forall r$

The proof is not direct—it involves other expressions for Ψ, in terms of $\Sigma_-(d + 1)$.
The symplectic case

The answer is easiest to describe when $G = \text{Sp}_n = \text{Sp}_{2d}$.

Let $\Psi = \sum_{\text{ALL Brauer diagrams } D \in B_{d+1}(-2d)} D$

Then Ψ has the following properties (L-Zhang, arXiv):

- $\Psi^2 = (d + 1)! \Psi$
- $\Psi f_i = f_i \Psi = 0 \ \forall i, 1 \leq i \leq d$
- $\Psi \pi = \pi \Psi \ \forall \pi \in \text{Sym}_{d+1}$ Thus $\frac{1}{(d+1)!} \Psi$ is the central idempotent in $B_{d+1}(-2d)$ corresponding to the trivial representation.
- Ψ generates $\text{Ker}(\eta_r) \ \forall r$

The proof is not direct—it involves other expressions for Ψ, in terms of $\sum_-(d+1)$
The symplectic case

The answer is easiest to describe when $G = \text{Sp}_n = \text{Sp}_{2d}$.

Let $\Psi = \sum_{\text{ALL Brauer diagrams } D \in B_{d+1}(-2d)} D$

Then Ψ has the following properties (L-Zhang, arXiv):

- $\Psi^2 = (d + 1)!\Psi$
- $\Psi f_i = f_i \Psi = 0 \forall i, 1 \leq i \leq d$
- $\Psi\pi = \pi\Psi \forall \pi \in \text{Sym}_{d+1}$ Thus $\frac{1}{(d+1)!}\Psi$ is the central idempotent in $B_{d+1}(-2d)$ corresponding to the trivial representation.
- Ψ generates $\text{Ker}(\eta_r) \forall r$

The proof is not direct—it involves other expressions for Ψ, in terms of $\sum_-(d + 1)$
Specifically, we have

$$\psi = \sum_{k=0}^{\lfloor \frac{d+1}{2} \rfloor} a_k \Xi_k$$

where

$$a_k = \frac{1}{(2^k k!)^2 (d + 1 - 2k)!}.$$

and Ξ_k ($k = 0, 1, \ldots, \lfloor \frac{d+1}{2} \rfloor$) is given by

To prove all the properties, other expressions for ψ are needed.
Specifically, we have

\[\Psi = \sum_{k=0}^{\left\lfloor \frac{d+1}{2} \right\rfloor} a_k \Xi_k \quad \text{where} \quad a_k = \frac{1}{(2^k k!)^2 (d + 1 - 2k)!}. \]

and \(\Xi_k (k = 0, 1, \ldots, \left\lfloor \frac{d+1}{2} \right\rfloor) \) is given by

To prove all the properties, other expressions for \(\Psi \) are needed.
Specifically, we have

\[\psi = \sum_{k=0}^{\left\lfloor \frac{d+1}{2} \right\rfloor} a_k \Xi_k \quad \text{where} \quad a_k = \frac{1}{(2^k k!)^2(d + 1 - 2k)!}. \]

and \(\Xi_k (k = 0, 1, \ldots, \left\lfloor \frac{d+1}{2} \right\rfloor) \) is given by

To prove all the properties, other expressions for \(\psi \) are needed.
Specifically, we have

\[\psi = \left[\frac{d+1}{2} \right] \sum_{k=0}^{d+1/2} a_k \Xi_k \quad \text{where} \quad a_k = \frac{1}{(2^k k!)^2 (d + 1 - 2k)!}. \]

and \(\Xi_k \) \((k = 0, 1, \ldots, \left[\frac{d+1}{2} \right]) \) is given by

To prove all the properties, other expressions for \(\psi \) are needed.
The orthogonal case

Let \(G = O(V) = O_n(\mathbb{C}) \).

Let \(\Psi = E_{\frac{n+1}{2}} \), where, for \(p = 0, 1, 2, \ldots, n + 1 \), \(E_p \) is defined diagramatically as

\[
E_{n+1-p} = \Sigma_+(n+1)
\]

Properties of \(\Psi \) (L-Zhang, arXiv, Ann Math 2012):

- \(\Psi^2 = ([n + 1])! (n + 1 - [n + 1])! \Psi \)
- \(\Psi f_i = f_i \Psi = 0 \ \forall \ i, 1 \leq i \leq n \)
- \(\Psi \) generates \(\text{Ker}(\eta_r) \ \forall \ r \)

The proof again requires other characterisations of \(\Psi \), and computations in the Brauer algebra.
The orthogonal case

Let $G = O(V) = O_n(\mathbb{C})$.

Let $\Psi = E_{[\frac{n+1}{2}]}$, where, for $p = 0, 1, 2, \ldots, n + 1$, E_p is defined diagramatically as

\[
E_{n+1-p} = \Sigma_{p}(n+1)
\]

Properties of Ψ (L-Zhang, arXiv, Ann Math 2012):

- $\Psi^2 = ([\frac{n+1}{2}])!(n + 1 - [\frac{n+1}{2}])!\Psi$
- $\Psi f_i = f_i \Psi = 0 \ \forall i, 1 \leq i \leq n$
- Ψ generates $\text{Ker}(\eta_r) \ \forall r$

The proof again requires other characterisations of Ψ, and computations in the Brauer algebra.
The orthogonal case

Let $G = O(V) = O_n(\mathbb{C})$.

Let $\Psi = E_{\frac{n+1}{2}}$, where, for $p = 0, 1, 2, \ldots, n + 1$, E_p is defined diagramatically as $E_{n+1-p} = \Sigma_+(n+1)$.

Properties of Ψ (L-Zhang, arXiv, Ann Math 2012):

- $\Psi^2 = (\frac{n+1}{2})!(n + 1 - \frac{n+1}{2})!\Psi$
- $\Psi f_i = f_i \Psi = 0 \ \forall i, 1 \leq i \leq n$
- Ψ generates $\text{Ker}(\eta_r) \ \forall r$

The proof again requires other characterisations of Ψ, and computations in the Brauer algebra.
The orthogonal case

Let $G = O(V) = O_n(\mathbb{C})$.

Let $\Psi = E_{\left\lceil \frac{n+1}{2} \right\rceil}$, where, for $p = 0, 1, 2, \ldots, n+1$, E_p is defined diagramatically as

\[
E_{n+1-p} = \Sigma_+(n+1)
\]

Properties of Ψ (L-Zhang, arXiv, Ann Math 2012):

- $\Psi^2 = \left(\left\lceil \frac{n+1}{2} \right\rceil \right)! (n+1 - \left\lceil \frac{n+1}{2} \right\rceil)! \Psi$
- $\Psi f_i = f_i \Psi = 0 \forall i, 1 \leq i \leq n$
- Ψ generates $\text{Ker}(\eta_r) \forall r$

The proof again requires other characterisations of Ψ, and computations in the Brauer algebra.
The orthogonal case

Let $G = O(V) = O_n(\mathbb{C})$.

Let $\Psi = E_{\left\lfloor \frac{n+1}{2} \right\rfloor}$, where, for $p = 0, 1, 2, \ldots, n + 1$, E_p is defined diagramatically as

\[
E_{n+1-p} = \Sigma_+(n+1)
\]

Properties of Ψ (L-Zhang, arXiv, Ann Math 2012):

- $\Psi^2 = \left(\left\lfloor \frac{n+1}{2} \right\rfloor \right)! (n + 1 - \left\lfloor \frac{n+1}{2} \right\rfloor)! \Psi$
- $\Psi f_i = f_i \Psi = 0 \ \forall i, 1 \leq i \leq n$
- Ψ generates $\text{Ker}(\eta_r) \ \forall r$

The proof again requires other characterisations of Ψ, and computations in the Brauer algebra.
The orthogonal case

Let $G = O(V) = O_n(\mathbb{C})$.

Let $\psi = E_{\lceil \frac{n+1}{2} \rceil}$, where, for $p = 0, 1, 2, \ldots, n+1$, E_p is defined diagramatically as

$E_{n+1-p} = \Sigma_+(n+1)$

Properties of ψ (L-Zhang, arXiv, Ann Math 2012):

- $\psi^2 = (\lceil \frac{n+1}{2} \rceil)! (n+1 - \lceil \frac{n+1}{2} \rceil)! \psi$

- $\psi f_i = f_i \psi = 0 \ \forall i, 1 \leq i \leq n$

- ψ generates $\text{Ker}(\eta_r) \ \forall r$

The proof again requires other characterisations of ψ, and computations in the Brauer algebra.
The orthogonal case

Let $G = O(V) = O_n(\mathbb{C})$.

Let $\Psi = E_{\left[\frac{n+1}{2}\right]}$, where, for $p = 0, 1, 2, \ldots, n + 1$, E_p is defined diagramatically as

$$E_{n+1-p} = \Sigma_+(n+1)$$

Properties of Ψ (L-Zhang, arXiv, Ann Math 2012):

- $\Psi^2 = \left(\left[\frac{n+1}{2}\right]\right)! (n + 1 - \left[\frac{n+1}{2}\right])! \Psi$
- $\Psi f_i = f_i \Psi = 0 \ \forall i, 1 \leq i \leq n$
- Ψ generates $\text{Ker}(\eta_r) \ \forall r$

The proof again requires other characterisations of Ψ, and computations in the Brauer algebra.
The orthogonal case

Let \(G = O(V) = O_n(\mathbb{C}) \).

Let \(\Psi = E_{\left\lceil \frac{n+1}{2} \right\rceil} \), where, for \(p = 0, 1, 2, \ldots, n+1 \), \(E_p \) is defined diagramatically as

\[
E_{n+1-p} = \Sigma_{+}(n+1)
\]

Properties of \(\Psi \) (L-Zhang, arXiv, Ann Math 2012):

1. \(\Psi^2 = \left(\left\lceil \frac{n+1}{2} \right\rceil \right)! (n+1 - \left\lceil \frac{n+1}{2} \right\rceil)! \Psi \)
2. \(\Psi f_i = f_i \Psi = 0 \ \forall i, 1 \leq i \leq n \)
3. \(\Psi \) generates \(\text{Ker}(\eta_r) \ \forall r \)

The proof again requires other characterisations of \(\Psi \), and computations in the Brauer algebra.
The orthogonal case

Let $G = O(V) = O_n(\mathbb{C})$.

Let $\Psi = E_{[\frac{n+1}{2}]}$, where, for $p = 0, 1, 2, \ldots, n+1$, E_p is defined diagramatically as

\[
E_{n+1-p} = \sum_+(n+1)
\]

Properties of Ψ (L-Zhang, arXiv, Ann Math 2012):

- $\Psi^2 = ([\frac{n+1}{2}])!(n+1 - [\frac{n+1}{2}])!\Psi$
- $\Psi f_i = f_i \Psi = 0 \ \forall i, 1 \leq i \leq n$
- Ψ generates $\text{Ker}(\eta_r) \ \forall r$

The proof again requires other characterisations of Ψ, and computations in the Brauer algebra.
The quantum case-types B, C and D.

Let $K = \mathbb{C}(q)$, $U_q = U_q(g)$ where g is the Lie algebra of relevant type; A is the subring of K consisting of functions with no pole at 1.

If $V_q \simeq K^n$ is the ‘natural’ U_q-module, then (in the usual notation for weights) $V_q = L_{\varepsilon_1}$ and

$$V_q \otimes V_q = L_{2\varepsilon} \oplus L_{\varepsilon_1+\varepsilon_2} \oplus L_0.$$

The eigenvalues of R on these 3 summands are respectively $q, -q^{-1}, \varepsilon q^{\varepsilon-n}$.

Hence in the homomorphism $\mu_{r,q} : KB_r \to \text{End}_{U_q}(V_q^\otimes r)$, the images σ of the generators of the braid group satisfy the cubic relation $(\sigma - q)(\sigma + q^{-1})(\sigma - \varepsilon q^{\varepsilon-n}) = 0$.
The quantum case-types B, C and D.

Let $K = \mathbb{C}(q)$, $U_q = U_q(\mathfrak{g})$ where \mathfrak{g} is the Lie algebra of relevant type; A is the subring of K consisting of functions with no pole at 1.

If $V_q \simeq K^n$ is the ‘natural’ U_q-module, then (in the usual notation for weights) $V_q = L_{\epsilon_1}$ and

$$V_q \otimes V_q = L_{2\epsilon} \oplus L_{\epsilon_1 + \epsilon_2} \oplus L_0.$$

The eigenvalues of R on these 3 summands are respectively $q, -q^{-1}, \epsilon q^{\epsilon-n}$.

Hence in the homomorphism $\mu_{r,q} : KB_r \to \text{End}_{U_q}(V_q \otimes r)$, the images σ of the generators of the braid group satisfy the cubic relation $(\sigma - q)(\sigma + q^{-1})(\sigma - \epsilon q^{\epsilon-n}) = 0.$
The quantum case-types B, C and D.

Let $K = \mathbb{C}(q), U_q = U_q(\mathfrak{g})$ where \mathfrak{g} is the Lie algebra of relevant type; A is the subring of K consisting of functions with no pole at 1.

If $V_q \simeq K^n$ is the ‘natural’ U_q-module, then (in the usual notation for weights) $V_q = L_{\epsilon_1}$ and

$$V_q \otimes V_q = L_{2\epsilon} \oplus L_{\epsilon_1 + \epsilon_2} \oplus L_0.$$

The eigenvalues of R on these 3 summands are respectively $q, -q^{-1}, \epsilon q^{\epsilon - n}$.

Hence in the homomorphism $\mu_{r,q} : KB_r \to \text{End}_{U_q}(V_q \otimes^r)$, the images σ of the generators of the braid group satisfy the cubic relation $(\sigma - q)(\sigma + q^{-1})(\sigma - \epsilon q^{\epsilon - n}) = 0$.
The quantum case-types B, C and D.

Let $K = \mathbb{C}(q)$, $U_q = U_q(g)$ where g is the Lie algebra of relevant type; A is the subring of K consisting of functions with no pole at 1.

If $V_q \simeq K^n$ is the ‘natural’ U_q-module, then (in the usual notation for weights) $V_q = L_{\varepsilon_1}$ and

$$V_q \otimes V_q = L_{2\varepsilon} \oplus L_{\varepsilon_1+\varepsilon_2} \oplus L_0.$$

The eigenvalues of R on these 3 summands are respectively $q, -q^{-1}, \varepsilon q^{\varepsilon-n}$.

Hence in the homomorphism $\mu_{r,q} : KB_r \to \text{End}_{U_q}(V_q^\otimes r)$, the images σ of the generators of the braid group satisfy the cubic relation $(\sigma - q)(\sigma + q^{-1})(\sigma - \varepsilon q^{\varepsilon-n}) = 0.$
The quantum case-types B, C and D.

Let $K = \mathbb{C}(q)$, $U_q = U_q(\mathfrak{g})$ where \mathfrak{g} is the Lie algebra of relevant type; A is the subring of K consisting of functions with no pole at 1.

If $V_q \simeq K^n$ is the ‘natural’ U_q-module, then (in the usual notation for weights) $V_q = L_{\epsilon_1}$ and

$$V_q \otimes V_q = L_{2\epsilon} \oplus L_{\epsilon_1 + \epsilon_2} \oplus L_0.$$

The eigenvalues of R on these 3 summands are respectively $q, -q^{-1}, \epsilon q^{\epsilon-n}$.

Hence in the homomorphism $\mu_{r,q} : KB_r \to \text{End}_{U_q}(V_q^{\otimes r})$, the images σ of the generators of the braid group satisfy the cubic relation

$$(\sigma - q)(\sigma + q^{-1})(\sigma - \epsilon q^{\epsilon-n}) = 0.$$
The quantum case-types B, C and D.

Let $K = \mathbb{C}(q)$, $U_q = U_q(\mathfrak{g})$ where \mathfrak{g} is the Lie algebra of relevant type; A is the subring of K consisting of functions with no pole at 1.

If $V_q \simeq K^n$ is the ‘natural’ U_q-module, then (in the usual notation for weights) $V_q = L_{\varepsilon_1}$ and

$$V_q \otimes V_q = L_{2\varepsilon} \oplus L_{\varepsilon_1 + \varepsilon_2} \oplus L_0.$$

The eigenvalues of R on these 3 summands are respectively $q, -q^{-1}, \varepsilon q^{\varepsilon - n}$.

Hence in the homomorphism $\mu_{r,q} : KB_r \to \text{End}_{U_q}(V_q \otimes^r)$, the images σ of the generators of the braid group satisfy the cubic relation $(\sigma - q)(\sigma + q^{-1})(\sigma - \varepsilon q^{\varepsilon - n}) = 0.$
One deduces easily that $\mu_{r,q}$ factors through the BMW algebra with appropriate parameters; i.e. we have

$$\nu_{r,q} : \text{BMW}_r(\epsilon q^{\epsilon-n}, q - q^{-1}) \rightarrow \text{End}_{U_q}(V_q^\otimes r).$$

Theorem (FFT): $\nu_{r,q}$ is surjective.

This is proved using an \mathcal{A}-form of all structures involved to reduce to the classical case by taking $\lim_{q \rightarrow 1}$.

What of the SFT? The key to using $\lim_{q \rightarrow 1}$ is the cellular structure of both $\text{BMW}_r(\epsilon q^{\epsilon-n}, q - q^{-1})$ and $B_r(\epsilon n)$.

Let $\text{BMW}_r^\epsilon(q)$ be the BMW algebra over \mathcal{A} with parameters $\epsilon q^{\epsilon-n}, q - q^{-1}$. Then:
One deduces easily that $\mu_{r,q}$ factors through the BMW algebra with appropriate parameters; i.e. we have

$$\nu_{r,q} : BMW_r(\varepsilon q^{\varepsilon-n}, q - q^{-1}) \rightarrow \text{End}_{U_q}(V_q^\otimes r).$$

Theorem (FFT): $\nu_{r,q}$ is surjective.

This is proved using an \mathcal{A}-form of all structures involved to reduce to the classical case by taking $\lim_{q \to 1}$.

What of the SFT? The key to using $\lim_{q \to 1}$ is the cellular structure of both $BMW_r(\varepsilon q^{\varepsilon-n}, q - q^{-1})$ and $B_r(\varepsilon n)$.

Let $BMW_r^\varepsilon(q)$ be the BMW algebra over \mathcal{A} with parameters $\varepsilon q^{\varepsilon-n}, q - q^{-1}$. Then:
One deduces easily that $\mu_{r,q}$ factors through the BMW algebra with appropriate parameters; i.e. we have

$$\nu_{r,q} : \text{BMW}_r(\varepsilon q^{\varepsilon - n}, q - q^{-1}) \to \text{End}_{U_q}(V_q^\otimes r).$$

Theorem (FFT): $\nu_{r,q}$ is surjective.

This is proved using an A-form of all structures involved to reduce to the classical case by taking $\lim_{q \to 1}$.

What of the SFT? The key to using $\lim_{q \to 1}$ is the cellular structure of both $\text{BMW}_r(\varepsilon q^{\varepsilon - n}, q - q^{-1})$ and $B_r(\varepsilon n)$.

Let $\text{BMW}_r^\varepsilon(q)$ be the BMW algebra over A with parameters $\varepsilon q^{\varepsilon - n}, q - q^{-1}$. Then:
One deduces easily that $\mu_{r,q}$ factors through the BMW algebra with appropriate parameters; i.e. we have

$$\nu_{r,q} : BMW_r(\varepsilon q^{\varepsilon-n}, q - q^{-1}) \rightarrow \text{End}_{U_q}(V_q^\otimes r).$$

Theorem (FFT): $\nu_{r,q}$ is surjective.

This is proved using an \mathcal{A}-form of all structures involved to reduce to the classical case by taking $\lim_{q \to 1}$.

What of the SFT? The key to using $\lim_{q \to 1}$ is the cellular structure of both $BMW_r(\varepsilon q^{\varepsilon-n}, q - q^{-1})$ and $B_r(\varepsilon n)$.

Let $BMW^\varepsilon_r(q)$ be the BMW algebra over \mathcal{A} with parameters $\varepsilon q^{\varepsilon-n}, q - q^{-1}$. Then:
One deduces easily that $\mu_{r,q}$ factors through the BMW algebra with appropriate parameters; i.e. we have

$$\nu_{r,q} : \text{BMW}_r(\varepsilon q^{\varepsilon - n}, q - q^{-1}) \to \text{End}_{U_q}(V_q^{\otimes r}).$$

Theorem (FFT): $\nu_{r,q}$ is surjective.

This is proved using an A-form of all structures involved to reduce to the classical case by taking $\lim_{q \to 1}$.

What of the SFT? The key to using $\lim_{q \to 1}$ is the cellular structure of both $\text{BMW}_r(\varepsilon q^{\varepsilon - n}, q - q^{-1})$ and $B_r(\varepsilon n)$.

Let $\text{BMW}^\varepsilon_r(q)$ be the BMW algebra over A with parameters $\varepsilon q^{\varepsilon - n}, q - q^{-1}$. Then:
One deduces easily that $\mu_{r,q}$ factors through the BMW algebra with appropriate parameters; i.e. we have

$$\nu_{r,q} : BMW_r(\varepsilon q^{\varepsilon - n}, q - q^{-1}) \to \text{End}_{U_q}(V_q^r).$$

Theorem (FFT): $\nu_{r,q}$ is surjective.

This is proved using an A-form of all structures involved to reduce to the classical case by taking $\lim_{q \to 1}$.

What of the SFT? The key to using $\lim_{q \to 1}$ is the cellular structure of both $BMW_r(\varepsilon q^{\varepsilon - n}, q - q^{-1})$ and $B_r(\varepsilon n)$.

Let $BMW_r^\varepsilon(q)$ be the BMW algebra over A with parameters $\varepsilon q^{\varepsilon - n}, q - q^{-1}$. Then:
\(BMW_r^\varepsilon(q) \) and \(B_r(\varepsilon n) \) have cellular structures with the same cell datum, and writing \(\lim_{q \to 1} (-) = - \otimes_A \mathbb{C} \), we have \(\lim_{q \to 1} BMW_r^\varepsilon(q) = B_r(\varepsilon n) \).

All cell modules \(W(\lambda) \) of \(B_r(\varepsilon n) \) are of the form \(W(\lambda) = \lim_{q \to 1} W_q(\lambda) \), where \(W_q(\lambda) \) is the corresponding cell module for \(BMW_r^\varepsilon(q) \).

This leads to the following situation.

\[
\begin{array}{cccc}
0 & \rightarrow & \text{Ker}(\nu_{q,r}) & \rightarrow & BMW_r^\varepsilon(K) & \nu_{q,r} & \rightarrow & \text{End}_{U_q}(V_q^\otimes r) & \rightarrow & 0 \\
& & \uparrow{-}\otimes_A K & & \uparrow{-}\otimes_A K & & & \uparrow{-}\otimes_A K & & \\
0 & \rightarrow & \text{Ker}(\nu_{A,r}) & \rightarrow & BMW_r^\varepsilon(q) & \nu_{A,r} & \rightarrow & \text{End}_{U_A}(V_A^\otimes r) & \rightarrow & 0 \\
& & \downarrow{\lim_{q \to 1}} & & \downarrow{\lim_{q \to 1}} & & & \downarrow{\lim_{q \to 1}} & & \\
0 & \rightarrow & \text{Ker}(\nu_r) & \rightarrow & B_r(\varepsilon n) & \nu_r & \rightarrow & \text{End}_G(V^\otimes r) & \rightarrow & 0 \\
\end{array}
\]
\(\text{BMW}_r^\varepsilon(q) \) and \(B_r(\varepsilon n) \) have cellular structures with the same cell datum, and writing \(\lim_{q \to 1}(-) = - \otimes_A \mathbb{C} \), we have \(\lim_{q \to 1} \text{BMW}_r^\varepsilon(q) = B_r(\varepsilon n) \).

All cell modules \(W(\lambda) \) of \(B_r(\varepsilon n) \) are of the form \(W(\lambda) = \lim_{q \to 1} W_q(\lambda) \), where \(W_q(\lambda) \) is the corresponding cell module for \(\text{BMW}_r^\varepsilon(q) \).

This leads to the following situation.

\[
\begin{align*}
0 & \to \text{Ker}(\nu_{q,r}) & \to & \text{BMW}_r^\varepsilon(K) & \nu_{q,r} & \to & \text{End}_{U_q}(V_q^\otimes r) & \to & 0 \\
& & \uparrow_{- \otimes_A K} & & & & \uparrow_{- \otimes_A K} & & \\
0 & \to \text{Ker}(\nu_{A,r}) & \to & \text{BMW}_r^\varepsilon(q) & \nu_{A,r} & \to & \text{End}_{U_A}(V_A^\otimes r) & \to & 0 \\
& & \downarrow_{\lim_{q \to 1}} & & & & \downarrow_{\lim_{q \to 1}} & & \\
0 & \to \text{Ker}(\nu_r) & \to & B_r(\varepsilon n) & \nu_r & \to & \text{End}_G(V^\otimes r) & \to & 0
\end{align*}
\]
\(\textit{BMW}_r(\varepsilon) \) and \(B_r(\varepsilon\eta) \) have cellular structures with the same cell datum, and writing \(\lim_{q \to 1}(-) = - \otimes A \mathbb{C} \), we have \(\lim_{q \to 1} \textit{BMW}_r(\varepsilon) = B_r(\varepsilon\eta) \).

All cell modules \(W(\lambda) \) of \(B_r(\varepsilon\eta) \) are of the form \(W(\lambda) = \lim_{q \to 1} W_q(\lambda) \), where \(W_q(\lambda) \) is the corresponding cell module for \(\textit{BMW}_r(\varepsilon) \).

This leads to the following situation.

\[
\begin{array}{cccccc}
0 & \to & \text{Ker}(\nu_{q,r}) & \to & \text{BMW}_r(\varepsilon)(K) & \xrightarrow{\nu_{q,r}} & \text{End}_{U_q}(V_q \otimes r) & \to & 0 \\
& & \uparrow{-}\otimes A K & & \uparrow{-}\otimes A K & & \uparrow{-}\otimes A K \\
0 & \to & \text{Ker}(\nu_{A,r}) & \to & \text{BMW}_r(\varepsilon)(q) & \xrightarrow{\nu_{A,r}} & \text{End}_{U_A}(V_A \otimes r) & \to & 0 \\
& & \downarrow{\lim_{q \to 1}} & & \downarrow{\lim_{q \to 1}} & & \downarrow{\lim_{q \to 1}} \\
0 & \to & \text{Ker}(\nu_r) & \to & B_r(\varepsilon\eta) & \xrightarrow{\nu_r} & \text{End}_G(V \otimes r) & \to & 0
\end{array}
\]
\(\text{BMW}_r^\varepsilon(q) \) and \(B_r(\varepsilon n) \) have cellular structures with the same cell datum, and writing \(\lim_{q \to 1} (-) = - \otimes_A \mathbb{C} \), we have \(\lim_{q \to 1} \text{BMW}_r^\varepsilon(q) = B_r(\varepsilon n) \).

- All cell modules \(W(\lambda) \) of \(B_r(\varepsilon n) \) are of the form \(W(\lambda) = \lim_{q \to 1} W_q(\lambda) \), where \(W_q(\lambda) \) is the corresponding cell module for \(\text{BMW}_r^\varepsilon(q) \).

This leads to the following situation.

\[
\begin{array}{ccccccc}
0 & \rightarrow & \text{Ker}(\nu_{q,r}) & \rightarrow & \text{BMW}_r^\varepsilon(K) & \rightarrow & \text{End}_U q(V_q \otimes r) & \rightarrow & 0 \\
& & \uparrow - \otimes_A K & & \uparrow - \otimes_A K & & \uparrow - \otimes_A K & & \\
0 & \rightarrow & \text{Ker}(\nu_{A,r}) & \rightarrow & \text{BMW}_r^\varepsilon(q) & \rightarrow & \text{End}_U A(V_A \otimes r) & \rightarrow & 0 \\
& & \downarrow \lim_{q \to 1} & & \downarrow \lim_{q \to 1} & & \downarrow \lim_{q \to 1} & & \\
0 & \rightarrow & \text{Ker}(\nu_r) & \rightarrow & B_r(\varepsilon n) & \rightarrow & \text{End}_G(V \otimes r) & \rightarrow & 0
\end{array}
\]
\[\text{BMW}_r (q) \text{ and } B_r (\varepsilon n) \text{ have cellular structures with the same cell datum, and writing } \lim_{q \to 1} (-) = - \otimes_A \mathbb{C}, \text{ we have } \lim_{q \to 1} \text{BMW}_r (q) = B_r (\varepsilon n). \]

\[\text{All cell modules } W(\lambda) \text{ of } B_r (\varepsilon n) \text{ are of the form } W(\lambda) = \lim_{q \to 1} W_q (\lambda), \text{ where } W_q (\lambda) \text{ is the corresponding cell module for } \text{BMW}_r (q). \]

This leads to the following situation.

\[
\begin{array}{cccccc}
0 & \to & \ker(\nu_{q,r}) & \to & \text{BMW}_r (K) & \nu_{q,r} \to & \text{End}_{U_q} (V^\otimes r) & \to & 0 \\
& & \uparrow - \otimes_A K & & \uparrow - \otimes_A K & & \uparrow - \otimes_A K & & \\
0 & \to & \ker(\nu_{A,r}) & \to & \text{BMW}_r (q) & \nu_{A,r} \to & \text{End}_{U_A} (V^\otimes r) & \to & 0 \\
& & \downarrow \lim_{q \to 1} & & \downarrow \lim_{q \to 1} & & \downarrow \lim_{q \to 1} & & \\
0 & \to & \ker(\nu_r) & \to & B_r (\varepsilon n) & \nu_r \to & \text{End}_G (V^\otimes r) & \to & 0 \\
\end{array}
\]
From this one deduces:

Theorem (LZ): Let \(\psi \in B_r(\varepsilon n) \) be such that \(\text{Ker}\, \nu_r = \langle \psi \rangle \).

Assume that \(\psi_q \in BMW_\varepsilon(q) \) is such that

- \(\psi_q^2 = f(q)\psi_q \) where \(f(1) \neq 0 \)
- \(\lim_{q \to 1} \psi_q = c\psi \), with \(c \neq 0 \).

Then \(\text{Ker}(\nu_{r,q}) = \langle \psi_q \rangle \).

Cor: \(\text{Ker}(\nu_{r,q}) = \langle \psi_q \rangle \) for some quasi-idempotent \(\psi_q \in BMW_\varepsilon_{d+1}(q) \) in both the symplectic and orthogonal cases.

In the symplectic case, we may take \(\psi_q \) to be the idempotent corresponding to the ‘trivial representation’ of \(BMW_\varepsilon_{d+1}(q) \).

In the orthogonal case we use an argument about lifting idempotents.

Remark: Jun Hu and Xsiao have proved that the above statements may be generalised to all characteristics, and have proved a linear version of the quantum statement.
From this one deduces:

Theorem (LZ): Let $\psi \in B_r(\varepsilon n)$ be such that $\text{Ker} \nu_r = \langle \psi \rangle$. Assume that $\psi_q \in \text{BMW}_r^\varepsilon(q)$ is such that

- $\psi_q^2 = f(q)\psi_q$ where $f(1) \neq 0$
- $\lim_{q \to 1} \psi_q = c\psi$, with $c \neq 0$.

Then $\text{Ker}(\nu_{r,q}) = \langle \psi_q \rangle$.

Cor: $\text{Ker}(\nu_{r,q}) = \langle \psi_q \rangle$ for some quasi-idempotent $\psi_q \in \text{BMW}_r^\varepsilon(q)$. In both the symplectic and orthogonal cases.

In the symplectic case, we may take ψ_q to be the idempotent corresponding to the ‘trivial representation’ of $\text{BMW}_r^\varepsilon(q)$.

In the orthogonal case we use an argument about lifting idempotents.

Remark: Jun Hu and Xsiao have proved that the above statements may be generalised to all characteristics, and have proved a linear version of the quantum statement.
From this one deduces:

Theorem (LZ): Let $\psi \in B_r(\epsilon n)$ be such that $\text{Ker} \nu_r = \langle \psi \rangle$. Assume that $\psi_q \in BMW^\epsilon_r(q)$ is such that

- $\psi_q^2 = f(q)\psi_q$ where $f(1) \neq 0$
- $\lim_{q \to 1} \psi_q = c\psi$, with $c \neq 0$.

Then $\text{Ker}(\nu_r,q) = \langle \psi_q \rangle$.

Cor: $\text{Ker}(\nu_r,q) = \langle \psi_q \rangle$ for some quasi-idempotent $\psi_q \in BMW^\epsilon_{d+1}(q)$ in both the symplectic and orthogonal cases.

In the symplectic case, we may take ψ_q to be the idempotent corresponding to the ‘trivial representation’ of $BMW^\epsilon_{d+1}(q)$.

In the orthogonal case we use an argument about lifting idempotents.

Remark: Jun Hu and Xsiao have proved that the above statements may be generalised to all characteristics, and have proved a linear version of the quantum statement.
From this one deduces:

Theorem (LZ): Let $\psi \in B_r(\varepsilon n)$ be such that $\ker \nu_r = \langle \psi \rangle$. Assume that $\psi_q \in BMW_r^\varepsilon(q)$ is such that

- $\psi_q^2 = f(q)\psi_q$ where $f(1) \neq 0$
- $\lim_{q \to 1} \psi_q = c\psi$, with $c \neq 0$.

Then $\ker(\nu_{r,q}) = \langle \psi_q \rangle$.

Cor: $\ker(\nu_{r,q}) = \langle \psi_q \rangle$ for some quasi-idempotent $\psi_q \in BMW_{d+1}^\varepsilon(q)$ in both the symplectic and orthogonal cases.

In the symplectic case, we may take ψ_q to be the idempotent corresponding to the ‘trivial representation’ of $BMW_{d+1}^\varepsilon(q)$.

In the orthogonal case we use an argument about lifting idempotents.

Remark: Jun Hu and Xsiao have proved that the above statements may be generalised to all characteristics, and have proved a linear version of the quantum statement.
From this one deduces:

Theorem (LZ): Let $\Psi \in B_r(\varepsilon n)$ be such that Ker$\nu_r = \langle \Psi \rangle$. Assume that $\Psi_q \in BMW_r^\varepsilon(q)$ is such that

- $\Psi_q^2 = f(q)\Psi_q$ where $f(1) \neq 0$
- $\lim_{q \to 1} \Psi_q = c\Psi$, with $c \neq 0$.

Then Ker$(\nu_{r,q}) = \langle \Psi_q \rangle$.

Cor: Ker$(\nu_{r,q}) = \langle \Psi_q \rangle$ for some quasi-idempotent $\Psi_q \in BMW_{d+1}^\varepsilon(q)$ in both the symplectic and orthogonal cases.

In the symplectic case, we may take Ψ_q to be the idempotent corresponding to the ‘trivial representation’ of $BMW_{d+1}^\varepsilon(q)$.

In the orthogonal case we use an argument about lifting idempotents.

Remark: Jun Hu and Xsiao have proved that the above statements may be generalised to all characteristics, and have proved a linear version of the quantum statement.
From this one deduces:

Theorem (LZ): Let \(\psi \in B_r(\varepsilon n) \) be such that \(\text{Ker} \nu_r = \langle \psi \rangle \). Assume that \(\psi_q \in BMW_r^\varepsilon(q) \) is such that

- \(\psi_q^2 = f(q)\psi_q \) where \(f(1) \neq 0 \)
- \(\lim_{q \to 1} \psi_q = c\psi \), with \(c \neq 0 \).

Then \(\text{Ker}(\nu_{r,q}) = \langle \psi_q \rangle \).

Cor: \(\text{Ker}(\nu_{r,q}) = \langle \psi_q \rangle \) for some quasi-idempotent \(\psi_q \in BMW_{d+1}^\varepsilon(q) \) in both the symplectic and orthogonal cases.

In the symplectic case, we may take \(\psi_q \) to be the idempotent corresponding to the ‘trivial representation’ of \(BMW_{d+1}^\varepsilon(q) \).

In the orthogonal case we use an argument about lifting idempotents.

Remark: Jun Hu and Xsiao have proved that the above statements may be generalised to all characteristics, and have proved a linear version of the quantum statement.
From this one deduces:

Theorem (LZ): Let $\psi \in B_r(\epsilon n)$ be such that $\text{Ker}\,\nu_r = \langle \psi \rangle$. Assume that $\psi_q \in BMW^\epsilon_r(q)$ is such that

- $\psi_q^2 = f(q)\psi_q$ where $f(1) \neq 0$
- $\lim_{q \to 1} \psi_q = c\psi$, with $c \neq 0$.

Then $\text{Ker}(\nu_{r,q}) = \langle \psi_q \rangle$.

Cor: $\text{Ker}(\nu_{r,q}) = \langle \psi_q \rangle$ for some quasi-idempotent $\psi_q \in BMW^\epsilon_{d+1}(q)$ in both the symplectic and orthogonal cases.

In the symplectic case, we may take ψ_q to be the idempotent corresponding to the ‘trivial representation’ of $BMW^\epsilon_{d+1}(q)$.

In the orthogonal case we use an argument about lifting idempotents.

Remark: Jun Hu and Xsiao have proved that the above statements may be generalised to all characteristics, and have proved a linear version of the quantum statement.
From this one deduces:

Theorem (LZ): Let $\psi \in B_r(\varepsilon n)$ be such that $\ker \nu_r = \langle \psi \rangle$. Assume that $\psi_q \in BMW_\varepsilon(q)$ is such that

- $\psi_q^2 = f(q)\psi_q$ where $f(1) \neq 0$
- $\lim_{q \to 1} \psi_q = c\psi$, with $c \neq 0$.

Then $\ker(\nu_{r,q}) = \langle \psi_q \rangle$.

Cor: $\ker(\nu_{r,q}) = \langle \psi_q \rangle$ for some quasi-idempotent $\psi_q \in BMW_\varepsilon_{d+1}(q)$ in both the symplectic and orthogonal cases.

In the symplectic case, we may take ψ_q to be the idempotent corresponding to the ‘trivial representation’ of $BMW_\varepsilon_{d+1}(q)$.

In the orthogonal case we use an argument about lifting idempotents.

Remark: Jun Hu and Xsiao have proved that the above statements may be generalised to all characteristics, and have proved a linear version of the quantum statement.
From this one deduces:

Theorem (LZ): Let $\psi \in B_r(\varepsilon n)$ be such that $\text{Ker } \nu_r = \langle \psi \rangle$. Assume that $\psi_q \in BMW^\varepsilon_r(q)$ is such that

- $\psi_q^2 = f(q)\psi_q$ where $f(1) \neq 0$
- $\lim_{q \to 1} \psi_q = c\psi$, with $c \neq 0$.

Then $\text{Ker}(\nu_{r,q}) = \langle \psi_q \rangle$.

Cor: $\text{Ker}(\nu_{r,q}) = \langle \psi_q \rangle$ for some quasi-idempotent $\psi_q \in BMW^\varepsilon_{d+1}(q)$ in both the symplectic and orthogonal cases.

In the symplectic case, we may take ψ_q to be the idempotent corresponding to the ‘trivial representation’ of $BMW^\varepsilon_{d+1}(q)$.

In the orthogonal case we use an argument about lifting idempotents.

Remark: Jun Hu and Xsiao have proved that the above statements may be generalised to all characteristics, and have proved a linear version of the quantum statement.
From this one deduces:

Theorem (LZ): Let $\psi \in B_r(\varepsilon_n)$ be such that $\text{Ker}\,\nu_r = \langle \psi \rangle$. Assume that $\psi_q \in BMW_\varepsilon^r(q)$ is such that

- $\psi_q^2 = f(q)\psi_q$ where $f(1) \neq 0$
- $\lim_{q \to 1} \psi_q = c\psi$, with $c \neq 0$.

Then $\text{Ker}(\nu_r,q) = \langle \psi_q \rangle$.

Cor: $\text{Ker}(\nu_r,q) = \langle \psi_q \rangle$ for some quasi-idempotent $\psi_q \in BMW_{d+1}^\varepsilon(q)$ in both the symplectic and orthogonal cases.

In the symplectic case, we may take ψ_q to be the idempotent corresponding to the ‘trivial representation’ of $BMW_{d+1}^\varepsilon(q)$.

In the orthogonal case we use an argument about lifting idempotents.

Remark: Jun Hu and Xsiao have proved that the above statements may be generalised to all characteristics, and have proved a linear version of the quantum statement.
Superalgebras

Let $V = V_0 \oplus V_1$ be a \mathbb{Z}_2-graded \mathbb{C}-vector space.

If $\dim V_0 = m$, $\dim V_1 = n$, say that $\text{sdim } V = (m|n)$.

Suppose V has an even non-degenerate bilinear form $(-, -)$ which is symmetric on V_0, skew symmetric on V_1, and satisfies $(V_0, V_1) = (V_1, V_0) = 0$. So $\text{sdim } V = (m|2n)$. This is an orthosymplectic superspace.

If V, W are \mathbb{Z}_2-graded, so are V^* and $\text{Hom}_\mathbb{C}(V, W) \cong W \otimes_\mathbb{C} V^*$. In particular, so is $\text{End}_\mathbb{C}(V)$.

- If $\text{sdim } (V) = (m|n)$ the general linear supergroup $\mathfrak{gl}(V) = \mathfrak{gl}(m|n)$ is the \mathbb{Z}_2-graded Lie algebra $\text{End}_\mathbb{C}(V)$, with Lie product $[X, Y] = XY - (-1)^{[X][Y]} YX$.

- The orthosymplectic Lie algebra $\mathfrak{osp}(m|2n)$ is the \mathbb{Z}_2-graded subalgebra of $\mathfrak{gl}(m|2n)$ defined by
 \[
 \{ X \in \mathfrak{gl}(m|2n) \mid (Xv, w) + (-1)^{[X][v]}(v; Xw) = 0 \}.
 \]
Superalgebras

Let $V = V_0 \oplus V_1$ be a \mathbb{Z}_2-graded \mathbb{C}-vector space.

If $\dim V_0 = m$, $\dim V_1 = n$, say that $\text{sdim } V = (m|n)$.

Suppose V has an even non-degenerate bilinear form $(-,-)$ which is symmetric on V_0, skew symmetric on V_1, and satisfies $(V_0, V_1) = (V_1, V_0) = 0$. So $\text{sdim } V = (m|2n)$. This is an orthosymplectic superspace.

If V, W are \mathbb{Z}_2-graded, so are V^* and $\text{Hom}_\mathbb{C}(V, W) \simeq W \otimes_\mathbb{C} V^*$. In particular, so is $\text{End}_\mathbb{C}(V)$.

• If $\text{sdim } (V) = (m|n)$ the general linear supergroup $\mathfrak{gl}(V) = \mathfrak{gl}(m|n)$ is the \mathbb{Z}_2-graded Lie algebra $\text{End}_\mathbb{C}(V)$, with Lie product $[X, Y] = XY - (-1)^{[X][Y]} YX$.

• The orthosymplectic Lie algebra $\mathfrak{osp}(m|2n)$ is the \mathbb{Z}_2-graded subalgebra of $\mathfrak{gl}(m|2n)$ defined by
\[\{ X \in \mathfrak{gl}(m|2n) \mid (Xv, w) + (-1)^{[X][v]}(v; Xw) = 0 \} \]
Superalgebras

Let $V = V_0 \oplus V_1$ be a \mathbb{Z}_2-graded \mathbb{C}-vector space.

If $\dim V_0 = m$, $\dim V_1 = n$, say that $\text{sdim } V = (m|n)$.

Suppose V has an even non-degenerate bilinear form $(-,-)$ which is symmetric on V_0, skew symmetric on V_1, and satisfies $(V_0, V_1) = (V_1, V_0) = 0$. So $\text{sdim } V = (m|2n)$. This is an orthosymplectic superspace.

If V, W are \mathbb{Z}_2-graded, so are V^* and $\text{Hom}_\mathbb{C}(V, W) \simeq W \otimes_\mathbb{C} V^*$. In particular, so is $\text{End}_\mathbb{C}(V)$.

- If $\text{sdim } (V) = (m|n)$ the general linear supergroup $\mathfrak{gl}(V) = \mathfrak{gl}(m|n)$ is the \mathbb{Z}_2-graded Lie algebra $\text{End}_\mathbb{C}(V)$, with Lie product $[X, Y] = XY - (-1)^{[X][Y]} YX$.

- The orthosymplectic Lie algebra $\mathfrak{osp}(m|2n)$ is the \mathbb{Z}_2-graded subalgebra of $\mathfrak{gl}(m|2n)$ defined by
 \[\{ X \in \mathfrak{gl}(m|2n) \mid (Xv, w) + (-1)^{[X][v]}(v; Xw) = 0 \}. \]
Superalgebras

Let $V = V_\bar{0} \oplus V_\bar{1}$ be a \mathbb{Z}_2-graded \mathbb{C}-vector space.

If $\dim V_\bar{0} = m$, $\dim V_\bar{1} = n$, say that $\text{sdim } V = (m|n)$.

Suppose V has an even non-degenerate bilinear form $(-,-)$ which is symmetric on $V_\bar{0}$, skew symmetric on $V_\bar{1}$, and satisfies $(V_\bar{0}, V_\bar{1}) = (V_\bar{1}, V_\bar{0}) = 0$. So $\text{sdim } V = (m|2n)$. This is an orthosymplectic superspace.

If V, W are \mathbb{Z}_2-graded, so are V^* and $\text{Hom}_\mathbb{C}(V, W) \simeq W \otimes_\mathbb{C} V^*$. In particular, so is $\text{End}_\mathbb{C}(V)$.

• If $\text{sdim } (V) = (m|n)$ the general linear supergroup $\mathfrak{gl}(V) = \mathfrak{gl}(m|n)$ is the \mathbb{Z}_2-graded Lie algebra $\text{End}_\mathbb{C}(V)$, with Lie product $[X, Y] = XY - (-1)^{[X][Y]} YX$.

• The orthosymplectic Lie algebra $\mathfrak{osp}(m|2n)$ is the \mathbb{Z}_2-graded subalgebra of $\mathfrak{gl}(m|2n)$ defined by $\{X \in \mathfrak{gl}(m|2n) \mid (Xv, w) + (-1)^{[X][v]}(v; Xw) = 0\}$.
Superalgebras

Let \(V = V_0 \oplus V_1 \) be a \(\mathbb{Z}_2 \)-graded \(\mathbb{C} \)-vector space.

If \(\dim V_0 = m, \dim V_1 = n \), say that \(\text{sdim} \ V = (m|n) \).

Suppose \(V \) has an even non-degenerate bilinear form \((-,-) \) which is symmetric on \(V_0 \), skew symmetric on \(V_1 \), and satisfies \((V_0, V_1) = (V_1, V_0) = 0 \). So \(\text{sdim} \ V = (m|2n) \). This is an orthosymplectic superspace.

If \(V, W \) are \(\mathbb{Z}_2 \)-graded, so are \(V^* \) and \(\text{Hom}_\mathbb{C}(V, W) \cong W \otimes_\mathbb{C} V^* \). In particular, so is \(\text{End}_\mathbb{C}(V) \).

- If \(\text{sdim} \ (V) = (m|n) \) the general linear supergroup \(\text{gl}(V) = \text{gl}(m|n) \) is the \(\mathbb{Z}_2 \)-graded Lie algebra \(\text{End}_\mathbb{C}(V) \), with Lie product \([X, Y] = XY - (-1)^{[X][Y]} YX \).

- The orthosymplectic Lie algebra \(\text{osp}(m|2n) \) is the \(\mathbb{Z}_2 \)-graded subalgebra of \(\text{gl}(m|2n) \) defined by \(\{ X \in \text{gl}(m|2n) \mid (Xv, w) + (-1)^{[X][v]}(v; Xw) = 0 \} \).
Superalgebras

Let $V = V_0 \oplus V_\bar{1}$ be a \mathbb{Z}_2-graded \mathbb{C}-vector space.

If $\dim V_0 = m$, $\dim V_\bar{1} = n$, say that $\text{sdim} V = (m|n)$.

Suppose V has an even non-degenerate bilinear form $(-,-)$ which is symmetric on V_0, skew symmetric on $V_\bar{1}$, and satisfies $(V_0, V_\bar{1}) = (V_\bar{1}, V_0) = 0$. So $\text{sdim} V = (m|2n)$. This is an orthosymplectic superspace.

If V, W are \mathbb{Z}_2-graded, so are V^* and $\text{Hom}_\mathbb{C}(V, W) \simeq W \otimes \mathbb{C} V^*$. In particular, so is $\text{End}_\mathbb{C}(V)$.

- If $\text{sdim} (V) = (m|n)$ the general linear supergroup $\text{gl}(V) = \text{gl}(m|n)$ is the \mathbb{Z}_2-graded Lie algebra $\text{End}_\mathbb{C}(V)$, with Lie product $[X, Y] = XY - (-1)^{[X][Y]} YX$.

- The orthosymplectic Lie algebra $\text{osp}(m|2n)$ is the \mathbb{Z}_2-graded subalgebra of $\text{gl}(m|2n)$ defined by $\{ X \in \text{gl}(m|2n) \mid (Xv, w) + (-1)^{[X][v]}(v; Xw) = 0 \}$.
Superalgebras

Let $V = V_0 \oplus V_1$ be a \mathbb{Z}_2-graded \mathbb{C}-vector space.

If $\dim V_0 = m$, $\dim V_1 = n$, say that $\text{sdim } V = (m|n)$.

Suppose V has an even non-degenerate bilinear form $(-,-)$ which is symmetric on V_0, skew symmetric on V_1, and satisfies $(V_0, V_1) = (V_1, V_0) = 0$. So $\text{sdim } V = (m|2n)$. This is an orthosymplectic superspace.

If V, W are \mathbb{Z}_2-graded, so are V^* and $\text{Hom}_\mathbb{C}(V, W) \cong W \otimes_\mathbb{C} V^*$. In particular, so is $\text{End}_\mathbb{C}(V)$.

- If $\text{sdim } (V) = (m|n)$ the general linear supergroup $\mathfrak{gl}(V) = \mathfrak{gl}(m|n)$ is the \mathbb{Z}_2-graded Lie algebra $\text{End}_\mathbb{C}(V)$, with Lie product $[X, Y] = XY - (-1)^{[X][Y]} YX$.

- The orthosymplectic Lie algebra $\mathfrak{osp}(m|2n)$ is the \mathbb{Z}_2-graded subalgebra of $\mathfrak{gl}(m|2n)$ defined by

 $\{ X \in \mathfrak{gl}(m|2n) \mid (Xv, w) + (-1)^{[X][v]}(v; Xw) = 0 \}$.
The Lie superalgebra $\mathfrak{gl}(V)$ acts on $V^\otimes r$ via

$$X.v_1 \otimes \ldots \otimes v_r = \sum_{i=1}^{r} (-1)^{[X][v_1]+\cdots+[v_{i-1}]} v_1 \otimes \ldots \otimes Xv_i \otimes \ldots \otimes v_r.$$

The subalgebra $\mathfrak{osp}(m|2n)$ acts correspondingly on $V^\otimes r$. Further the group $G := O(V_0) \times Sp(V_1)$ also acts on $V^\otimes r$, compatibly with \mathfrak{osp}.

We have the endomorphisms $\tau, e \in \text{End}_{\mathfrak{osp},G}(V \otimes V)$:

$$\tau(v \otimes w) = (-1)^{[v][w]} w \otimes v$$

e is defined in a similar way to the classical orthogonal and symplectic cases, using dual homogeneous bases of V.

This shows that: the Brauer algebra $B_r(m - 2n)$ acts on $V^\otimes r$. This action commutes with that of \mathfrak{osp} and of G.
The Lie superalgebra $\mathfrak{gl}(V)$ acts on $V^\otimes r$ via

$$X \cdot v_1 \otimes \ldots \otimes v_r = \sum_{i=1}^{r} (-1)^{[X]([v_1]+\ldots+[v_{i-1}])} v_1 \otimes \ldots \otimes Xv_i \otimes \ldots \otimes v_r.$$

The subalgebra $\mathfrak{osp}(m|2n)$ acts correspondingly on $V^\otimes r$. Further the group $G := O(V_0) \times Sp(V_1)$ also acts on $V^\otimes r$, compatibly with \mathfrak{osp}. We have the endomorphisms $\tau, e \in \operatorname{End}_{\mathfrak{osp},G}(V \otimes V)$:

$$\tau(v \otimes w) = (-1)^{[v][w]} w \otimes v$$

e is defined in a similar way to the classical orthogonal and symplectic cases, using dual homogeneous bases of V. This shows that: the Brauer algebra $B_r(m-2n)$ acts on $V^\otimes r$. This action commutes with that of \mathfrak{osp} and of G.

The Lie superalgebra $\mathfrak{gl}(V)$ acts on $V^\otimes r$ via

$$X . v_1 \otimes \ldots \otimes v_r = \sum_{i=1}^{r} (-1)^{[X][v_1]+\ldots+[v_{i-1}]} v_1 \otimes \ldots \otimes Xv_i \otimes \ldots \otimes v_r.$$

The subalgebra $\mathfrak{osp}(m|2n)$ acts correspondingly on $V^\otimes r$. Further the group $G := O(V_0) \times Sp(V_1)$ also acts on $V^\otimes r$, compatibly with \mathfrak{osp}.

We have the endomorphisms $\tau, e \in \text{End}_{\mathfrak{osp}, G}(V \otimes V)$:

$$\tau(v \otimes w) = (-1)^{[v][w]} w \otimes v$$

e is defined in a similar way to the classical orthogonal and symplectic cases, using dual homogeneous bases of V.

This shows that: the Brauer algebra $B_r(m-2n)$ acts on $V^\otimes r$.

This action commutes with that of \mathfrak{osp} and of G.
The Lie superalgebra $\mathfrak{gl}(V)$ acts on $V^\otimes r$ via

$$X.v_1 \otimes \ldots \otimes v_r = \sum_{i=1}^r (-1)^{[X][v_i]}(v_1 + \ldots + v_{i-1})v_1 \otimes \ldots \otimes Xv_i \otimes \ldots \otimes v_r.$$

The subalgebra $\mathfrak{osp}(m|2n)$ acts correspondingly on $V^\otimes r$. Further the group $G := O(V_0) \times Sp(V_\bar{1})$ also acts on $V^\otimes r$, compatibly with \mathfrak{osp}. We have the endomorphisms $\tau, e \in \text{End}_{\mathfrak{osp}, G}(V \otimes V)$:

$$\tau(v \otimes w) = (-1)^{[v][w]}w \otimes v$$

e is defined in a similar way to the classical orthogonal and symplectic cases, using dual homogeneous bases of V.

This shows that: the Brauer algebra $B_r(m-2n)$ acts on $V^\otimes r$. This action commutes with that of \mathfrak{osp} and of G.

The Lie superalgebra $\mathfrak{gl}(V)$ acts on $V^\otimes r$ via

$$X \cdot v_1 \otimes \ldots \otimes v_r = \sum_{i=1}^{r} (-1)^{[X]([v_1] + \cdots + [v_{i-1}])} v_1 \otimes \ldots \otimes Xv_i \otimes \ldots \otimes v_r.$$

The subalgebra $\mathfrak{osp}(m|2n)$ acts correspondingly on $V^\otimes r$. Further the group $G := O(V_0) \times Sp(V_1)$ also acts on $V^\otimes r$, compatibly with \mathfrak{osp}.

We have the endomorphisms $\tau, e \in \text{End}_{\mathfrak{osp},G}(V \otimes V)$:

$$\tau(v \otimes w) = (-1)^{[v][w]} w \otimes v$$

e is defined in a similar way to the classical orthogonal and symplectic cases, using dual homogeneous bases of V.

This shows that: the Brauer algebra $B_{r}(m−2n)$ acts on $V^\otimes r$. This action commutes with that of \mathfrak{osp} and of G.
The Lie superalgebra $\mathfrak{gl}(V)$ acts on $V^\otimes r$ via

$$X. v_1 \otimes \ldots \otimes v_r = \sum_{i=1}^{r} (-1)^{[X][v_1]+\cdots+[v_{i-1}]} v_1 \otimes \ldots \otimes Xv_i \otimes \ldots \otimes v_r.$$

The subalgebra $\mathfrak{osp}(m|2n)$ acts correspondingly on $V^\otimes r$. Further the group $G := O(V_0) \times Sp(V_1)$ also acts on $V^\otimes r$, compatibly with \mathfrak{osp}.

We have the endomorphisms $\tau, e \in \text{End}_{\mathfrak{osp},G}(V \otimes V)$:

$$\tau(v \otimes w) = (-1)^{[v][w]} w \otimes v$$

e is defined in a similar way to the classical orthogonal and symplectic cases, using dual homogeneous bases of V.

This shows that: the Brauer algebra $B_r(m-2n)$ acts on $V^\otimes r$. This action commutes with that of \mathfrak{osp} and of G.
The Lie superalgebra $\mathfrak{gl}(V)$ acts on $V^\otimes r$ via

$$X.v_1 \otimes \ldots \otimes v_r = \sum_{i=1}^{r} (-1)^{[X][v_1]+\ldots+[v_{i-1}]} v_1 \otimes \ldots \otimes Xv_i \otimes \ldots \otimes v_r.$$

The subalgebra $\mathfrak{osp}(m|2n)$ acts correspondingly on $V^\otimes r$. Further the group $G := O(V_{\bar{0}}) \times Sp(V_{\bar{1}})$ also acts on $V^\otimes r$, compatibly with \mathfrak{osp}.

We have the endomorphisms $\tau, e \in \text{End}_{\mathfrak{osp},G}(V \otimes V)$:

$$\tau(v \otimes w) = (-1)^{[v][w]} w \otimes v$$

e is defined in a similar way to the classical orthogonal and symplectic cases, using dual homogeneous bases of V.

This shows that: the Brauer algebra $B_r(m-2n)$ acts on $V^\otimes r$. This action commutes with that of \mathfrak{osp} and of G.
This leads to:

Theorem (LZ 2013, see also Serge’ev) The map \(B_r(m - 2n) \to \text{End}_{osp,G}(V^\otimes r) \) is surjective.

The proof is by converting to an equivalent statement for the orthosymplectic supergroup over an infinite dimensional Grassmann algebra, and using the geometric method of Atiyah et al.

This case is more complicated than the usual classical ones, because we do not have complete reducibility, even for \(V \otimes V \).
This leads to:

Theorem (LZ 2013, see also Serge’ev) The map
\[B_r(m - 2n) \rightarrow \text{End}_{osp,G}(V \otimes r) \] is surjective.

The proof is by converting to an equivalent statement for the orthosymplectic supergroup over an infinite dimensional Grassmann algebra, and using the geometric method of Atiyah et al.

This case is more complicated than the usual classical ones, because we do not have complete reducibility, even for \(V \otimes V \).
This leads to:

Theorem (LZ 2013, see also Serge’ev) The map \(B_r(m - 2n) \to \text{End}_{osp,G}(V \otimes r) \) is surjective.

The proof is by converting to an equivalent statement for the orthosymplectic supergroup over an infinite dimensional Grassmann algebra, and using the geometric method of Atiyah et al.

This case is more complicated than the usual classical ones, because we do not have complete reducibility, even for \(V \otimes V \).
This leads to:

Theorem (LZ 2013, see also Serge’ev) The map \(B_r(m - 2n) \to \text{End}_{\text{osp},G}(V \otimes V') \) is surjective.

The proof is by converting to an equivalent statement for the orthosymplectic supergroup over an infinite dimensional Grassmann algebra, and using the geometric method of Atiyah et al.

This case is more complicated than the usual classical ones, because we do not have complete reducibility, even for \(V \otimes V \).
Further questions

Integral versions of all cases; analysis at roots of unity; tilting modules

For which pairs g, V do we have $\mathcal{A}B_r \to \text{End}_{U^A(g)}(V \otimes r)$ surjective? And for which subrings A of K?

When does the above map factor through a cellular algebra? (cf. ALZ)
Further questions

Integral versions of all cases; analysis at roots of unity; tilting modules

For which pairs g, V do we have $AB_r \rightarrow \text{End}_{U_A(g)}(V^\otimes r)$ surjective? And for which subrings A of K?

When does the above map factor through a cellular algebra? (cf. ALZ)
Further questions

Integral versions of all cases; analysis at roots of unity; tilting modules

For which pairs g, V do we have $A B_r \rightarrow \text{End}_{U_A}(g)(V \otimes r)$ surjective? And for which subrings A of K?

When does the above map factor through a cellular algebra? (cf. ALZ)
Further questions

Integral versions of all cases; analysis at roots of unity; tilting modules

For which pairs g, V do we have $AB_r \rightarrow \text{End}_{U_A(g)}(V \otimes r)$ surjective? And for which subrings A of K?

When does the above map factor through a cellular algebra? (cf. ALZ)
Selected Bibliography
Richard Brauer, “On algebras which are connected with the semisimple continuous groups”, Ann. of Math. (2) 38 (1937), 857–872.

